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Introduction

Context

A major challenge of our time: extracting information from massive complex data

High-level queries essential

Big data platforms rapidly evolving
Performances can vary by an order of magnitude depending on primitives

Predictive analytics with medical data, queries (33M patients, 3B records):
centralized: 6 days −→ distributed: 40 min −→ distributed (optimized): 2 min

2 / 32



Introduction

Context

A major challenge of our time: extracting information from massive complex data

High-level queries essential

Big data platforms rapidly evolving
Performances can vary by an order of magnitude depending on primitives

Predictive analytics with medical data, queries (33M patients, 3B records):
centralized: 6 days −→ distributed: 40 min −→ distributed (optimized): 2 min

Challenges

Reduce the gap between high-level queries and low-level efficient distributed code

Distribute data and computations appropriately

Support more expressive queries

2 / 32



Introduction

Context

A major challenge of our time: extracting information from massive complex data

High-level queries essential

Big data platforms rapidly evolving
Performances can vary by an order of magnitude depending on primitives

Predictive analytics with medical data, queries (33M patients, 3B records):
centralized: 6 days −→ distributed: 40 min −→ distributed (optimized): 2 min

Challenges

Reduce the gap between high-level queries and low-level efficient distributed code

Distribute data and computations appropriately

Support more expressive queries

Renewed interest in static analysis:
1 analyse/optimize queries first!
2 compile them into efficient and scalable distributed code!
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q: query d : database instance q(d): results of evaluting q over d
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Query containment: q1 is contained in q2, denoted q1 ⊆ q2, if for every d , we have
q1(d) ⊆ q2(d)

Query satisfiability, in the presence of constraints S: a query q is satisfiable if there
exists some d satisfying S such that q(d) 6= ∅
Query-update independence analysis: q is independent from an update u if we have
q(d) = q(u(d)) for all d (where u(d) denotes the updated database)

Static type-checking of transformations

Major applications: early detection of errors, query optimisation, redundancy elimination,
faster access control (costs deferred at compile-time), improved compilation, etc.
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Static analysis tasks

Typical complexity: usually very high when decidable (e.g. lucky if in EXPTIME)
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Typical query size: small (independent from dataset size)

Query evaluation

Typical complexity: usually low (e.g. linear/polynomial-time)

Typical dataset size: huge

A few seconds of static analysis can save hours of distributed computations...

Better analyse once!

Main scientific challenge (hard problem): reasoning over every database instances d
(infinite sets)
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Introduction

Outline

1 What can be achieved with trees
theory: logical formulas
algorithm: decision procedure
practical applications (overview)

2 Generalization to graphs
problems, fundamental limits, possibilities
SPARQL query containment (theory and practice)

3 Overview of on-going work: synthesis of distributed code
The SPARQLGX system
Perspectives
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Trees: theory

The Logical Approach to Static Analysis

Logical Formula Solver

Counter-Example Generator

Data structure instance
illustrating the bug

Compilers unsatis�able
(bug cannot occur)

satis�able
(bug can occur)

queries, constraints

1 Expressive unifying modal logics for reasoning on data structures d

2 Compilers → formalising the initial problem as a reasoning/decision problem
3 Novel exact decision procedures → satisfiability testing

Tested formula: ¬ϕ where ϕ is a desired guarantee (e.g. q1 ⊆ q2)
4 Algorithmic/implementation techniques (seeking to avoid worst-cases)
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Trees: theory

Starting with Trees

Finite binary labeled trees

They model finite ordered unranked labeled trees (wlog)

Bijective encoding of unranked trees as binary trees (first child, next sibling):
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Trees: theory

Formulas of the Lµ Logic [TOCL’15]

Programs α ∈ {1, 2, 1, 2} for
navigating binary trees (α = α)

1 2

Lµ 3 ϕ,ψ ::= formula
> true

| p | ¬p atomic prop (negated)
| n | ¬n nominal (negated)
| ϕ ∨ ψ | ϕ ∧ ψ disjunction (conjunction)
| 〈α〉ϕ | ¬ 〈α〉> existential (negated)
| µX .ϕ unary fixpoint (finite recursion)
| µXi .ϕi in ψ n-ary fixpoint
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Trees: theory

Sample Formula and Satisfying Binary Tree

a ∧ 〈2〉 b a

b
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Trees: theory

Sample Formula and Satisfying Binary Tree

(
a ∧ 〈2〉 b

)
∧ µX . 〈2〉 c ∨

〈
1
〉
X a

b

?

?

c

Semantics: models of ϕ are finite trees for which ϕ holds at some node

X Interesting balance between succinctness and expressive power: many queries and
constraints (e.g. schemas) can be translated into the logic, linearly
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Trees: theory

Example: Translation of an XPath Query into Lµ

Binary tree representation:

Translated query: child::a [child::b]

a ∧ (µZ .
〈
1
〉
χ ∨

〈
2
〉
Z )︸ ︷︷ ︸

ϕ

∧ 〈1〉µY .b ∨ 〈2〉Y︸ ︷︷ ︸
ψ

χ

a ϕ

c

a

d

b

ϕ∧ψ

XPath semantics: sets of nodes

Lµ formula holds at selected nodes

µZ .ϕ : finite recursion

Converse programs are crucial

Absolute expressions refer to the root:
¬

〈
1
〉
> ∧ ¬

〈
2
〉
>

More generally, we have a compiler for
XP{↓,↓

∗,↑,↑∗,←,←∗,→,→∗,[ ],∧,∨,¬,|}

Schema constraints can be translated
as well (n-ary fixpoint for mutual
recursion)
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Trees: theory

Translation of Schema Constraints into Lµ: Example

<!ELEMENT article
(meta, (text | redirect))>

<!ELEMENT meta
(title, status?,
interwiki*, history?)>

<!ELEMENT title (#PCDATA)>
<!ELEMENT interwiki (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT history (edit)+>
<!ELEMENT edit

(status?, interwiki*,
(text | redirect)?)>

<!ELEMENT redirect EMPTY>
<!ELEMENT text (#PCDATA)>

Figure: Frag. of Wikipedia DTD

let_mu
X2 = text & ~(<1>T) & ~(<2>T)
| redirect & ~(<1>T) & ~(<2>T)
| interwiki & ~(<1>T) & (~(<2>T) | <2>X2),

X3 = text & ~(<1>T)) & ~(<2>T))
| redirect & ~(<1>T) & ~(<2>T)
| interwiki & ~(<1>T) & (~(<2>T) | <2>X2)
| status & ~(<1>T) & (~(<2>T) | <2>X2),

X4 = edit & (~(<1>T) | <1>X3) & ~(<2>T))
| edit & (~(<1>T) | <1>X3) & <2>X4)),

X5 = history & <1>X4 & ~(<2>T)
| interwiki & ~(<1>T) & (~(<2>T) | <2>X5),

X6 = history & <1>X4 & ~(<2>T)
| interwiki & ~(<1>T) & (~(<2>T) | <2>X5)
| status & ~(<1>T) & (~(<2>T) | <2>X5)),

X7 = title & ~(<1>T) & (~(<2>T) | <2>X6),
X8 = text & ~(<1>T) & ~(<2>T)
| redirect & ~(<1>T) & ~(<2>T),

X9 = meta & <1>X7 & <2>X8,
X10= article & <1>X9 & ~(<2>T) & ~(<-1>T) & ~(<-2>T)

in X10

Figure: Corresponding linear-size Lµ Formula
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Trees: decision procedure

Deciding Lµ Satisfiability

Is a formula ψ ∈ Lµ satisfiable?

Given ψ, determine whether there exists a finite tree that satisfies ψ

Validity: test ¬ψ

Principles: Automatic Theorem Proving

Search for a proof tree

Build the proof bottom up:

“if ψ holds then it is necessarily somewhere up”
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Trees: decision procedure

Search Space Optimization

Idea: Leveraging the fact that Truth Status is Inductive

The truth status of ψ can be expressed as a function of its subformulas

For boolean connectives, it can be deduced (truth tables)

Only base subformulas really matter: Lean(ψ)

Lean(ψ) : 〈1〉> 〈2〉>
〈
1
〉
>

〈
2
〉
> a b σ 〈1〉ϕ 〈2〉ϕ︸ ︷︷ ︸

topological propositions
︸ ︷︷ ︸

atomic props in ψ
︸ ︷︷ ︸

modal subformulas

A Tree Node: Truth Assignment of Lean(ψ) Formulas

With some additional constraints, e.g. ¬
〈
1
〉
> ∨ ¬

〈
2
〉
>
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree

A set of nodes is repeatedly updated (fixpoint computation)
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree

Step 1: all relevant leaves are added
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree

Step i > 1: all possible parents of previous nodes are added
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

〈1〉ϕ

ϕ

ϕ 〈
2
〉
ϕ

Compatibility relation between nodes

Nodes from previous step are proof support:
〈α〉ϕ is added if ϕ holds in some node added at previous step
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

η

¬b ∧ µX .b ∨
〈
2
〉
X︸ ︷︷ ︸

η

Compatibility relation between nodes

Nodes from previous step are proof support:
〈α〉ϕ is added if ϕ holds in some node added at previous step
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

Progressive bottom-up reasoning (partial satisfiability)

〈α〉ϕ are left unproved until a parent is connected
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

ψ

〈α〉ϕ

Termination

If ψ is present in some root node, then ψ is satisfiable

Otherwise, the algorithm terminates when no more nodes can be added
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

ψ

Main Results [PLDI’07, IJCAI’15a, TOCL’15]

Lµ is closed under negation

For ψ ∈ Lµ, sat(ψ) decidable in time 2O(|Lean(ψ)|)

In practice: fast enumeration using symbolic techniques (BDDs)
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Trees: decision procedure

Try it online∗: http://tyrex.inria.fr/websolver

* or offline if performance is critical: the offline version is faster (native BDD library,
further optimizations like compression of symbols)
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Trees: practical applications

Applications

This solver is reused as the essential component to solve diverse practical problems:

Query containment, equivalence and satisfiability for the navigational XPath
fragment, in the presence of regular tree constraints (schemas) [PLDI’07, ICDE’10]
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Trees: practical applications

Applications

This solver is reused as the essential component to solve diverse practical problems:

Query containment, equivalence and satisfiability for the navigational XPath
fragment, in the presence of regular tree constraints (schemas) [PLDI’07, ICDE’10]

and also:

Static type checking for XQuery transformations [ICFP’15]

Impact of schema evolutions [ICFP’09, WWW’10, TOIT’11]

Deciding subtyping with functions/polymorphism [ICFP’11, TOPLAS’15]

Verification of layouts & CSS style sheets [WWW’12, IJCAI’15b]

University of Washington (USA): query intersection in analysing web page scripting

University of Maryland (USA): analysing access control policies (e.g. XACML)

University of Edinburgh (UK): query containment for XML databases

Institute of CS-FORTH (Greece): access control system for documents

University of British Columbia (Canada): software engineering for the cloud

Universität Stuttgart (Germany): analysis of BPEL data flows
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Trees: practical applications

Overview of Experiments with Static Analyzers

Sample Problem Lean Size Time
Simple RE intersection & equivalence 30 15 ms

Query containment q ⊆ q′ (XPath) 50 50 ms
Query satisfiability with constraints (e.g. SMIL 1.0) 90 350 ms

Subtyping with rich types 60 70 ms
Schema evolution (moderate: e.g. XHTML-Basic) 170 2.5 s

Schema evolution (large: e.g. MathML) 290 8 s
Schema evolution (huge & complex, with attributes) 550 ? | 27 s

Analysis of style sheets (many such calls) 60 40 ms
Precise typing for XQuery (many such calls) 70 35 ms
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Subtyping with rich types 60 70 ms
Schema evolution (moderate: e.g. XHTML-Basic) 170 2.5 s

Schema evolution (large: e.g. MathML) 290 8 s
Schema evolution (huge & complex, with attributes) 550 ? | 27 s

Analysis of style sheets (many such calls) 60 40 ms
Precise typing for XQuery (many such calls) 70 35 ms

For some test, size of the Lean is 550. The search space is 2550 ≈ 10165... more than the
square number of atoms in the universe 1080
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Trees: wrap-up

Overview of Tree Logics

On the theoretical side: Lµ offers an interesting expressivity, succinctness, optimal
complexity bound

Expr.:

Sat.:

Impl.:

1968

WS2S

MSO

Non-elementary

MONA

1977

PDL(tree)

? (<MSO)

EXPTIME

?

1981

CTL

FO

EXPTIME

?

1983

µ-calculus

MSO

EXPTIME

?

2015

Lµ
forward + backward

(for finite trees)

MSO

2O(n)

Lµ Solver

On the practical side:

except (hyperexponential) MONA, this is one of the rare implementation available
of a satisfiability solver for such an expressive logic
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Generalisation to Graphs

Outline

1 What can be achieved with trees
theory: logical formulas
algorithm: decision procedure
practical applications (overview)

2 Generalization to graphs
problems, fundamental limits, possibilities
SPARQL query containment (theory and practice)
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Generalisation to Graphs: problems, limits, possibilities

Fundamental Limits in Static Analysis: The Big Picture

The situation with the most expressive/robust graph logics

µ-calculus: Lµ formulas with greatest fixpoint, interpreted over graphs

3 critical features: backward modalities, nominals, graded modalities

the 3 features together: resulting logic is undecidable
any 2 of them: decidable logics, hard algorithmic challenges for implementation
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Application to RDF and SPARQL

The RDF data model is powerful

predicates can also be subjects

backward modalities seem to be required to capture the RDF data model
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Graph query languages (ex: SPARQL) introduce other difficulties

semantics of queries: bags (multisets) of mappings of variables to RDF terms

query containment undecidable under bag semantics (for UCQs)
sets of mappings are most often considered in the literature
set semantics: sets of mappings of variables, not sets of nodes!

cyclic dependencies between variables

queries of different arities

One can still check query containment for SPARQL fragments!

One reason for that: query containment can be solved without fully capturing the
semantics of queries required for evaluation
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Generalisation to Graphs in practice

Zoom on RDF Graphs

In the RDF standard (W3C), a graph is a set of triples (s, p, o)

Dutch School2016 Museum

Louvre

creationDate type

use type

Rembrandt

Collection

Hals

Vermeer

Van Dyck

Paintershows

mainTopic

shows

shows

shows

shows

type
type

type

type

subject predicate object
Dutch School type Museum
Dutch School creationDate 2016
Dutch School use Louvre

Louvre type Museum
Rembrandt type Painter

Hals type Painter
Vermeer type Painter

Van Dyck type Painter
Dutch School mainTopic Rembrandt

Collection shows Rembrandt
Dutch School shows Rembrandt
Dutch School shows Hals
Dutch School shows Vermeer
Dutch School shows Van Dyck
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Generalisation to Graphs in practice

Zoom on Core SPARQL Queries

– A Triple Pattern: RDF triple with variables
– A Basic Graph Pattern: conjunction of triple patterns

Dutch School2016 Museum
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Van Dyck
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mainTopic

shows

shows

shows

shows

type
type

type

type

?s type Museum
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Dutch School2016 Museum
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creationDate type
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Collection
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Van Dyck

Paintershows

mainTopic

shows

shows

shows

shows

type
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?s type Museum
?g type Painter
?s shows ?g

?s: Dutch School, Louvre

Semantics
– A mapping: a partial function from variables to RDF terms
– The evaluation of a pattern returns a set of mappings
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Dutch School2016 Museum

Louvre

creationDate type

use type

Rembrandt

Collection

Hals

Vermeer

Van Dyck

Paintershows

mainTopic

shows

shows

shows

shows

type
type

type

type

?s type Museum
?g type Painter
?s shows ?g

?s: Dutch School, Louvre
?g: Rembrandt, Hals, Vermeer, Van Dyck
(?s,?g): (Dutch School,Rembrandt), (Dutch
School,Hals), (Dutch School,Vermeer), (Dutch
School,Van Dyck),(Collection,Rembrandt)

Semantics
– A mapping: a partial function from variables to RDF terms
– The evaluation of a pattern returns a set of mappings
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Generalisation to Graphs in practice

Zoom on Core SPARQL Queries

– A Triple Pattern: RDF triple with variables
– A Basic Graph Pattern: conjunction of triple patterns

Dutch School2016 Museum

Louvre

creationDate type

use type

Rembrandt

Collection

Hals

Vermeer

Van Dyck

Paintershows

mainTopic

shows

shows

shows

shows

type
type

type

type

SELECT ?s ?g WHERE {
?s type Museum
?g type Painter
?s shows ?g

}

?s: Dutch School, Louvre
?g: Rembrandt, Hals, Vermeer, Van Dyck
(?s,?g): (Dutch School,Rembrandt), (Dutch
School,Hals), (Dutch School,Vermeer), (Dutch
School,Van Dyck),(Collection,Rembrandt)

Solution (?s,?g): (Dutch School,Rembrandt),
(Dutch School,Hals), (Dutch School,Vermeer),
(Dutch School,Van Dyck)

Semantics
– A mapping: a partial function from variables to RDF terms
– The evaluation of a pattern returns a set of mappings
– Final set of mappings obtained by composition (join, union, difference, etc.) 20 / 32



Generalisation to Graphs in practice

Definition of Query Containment

We denote the answer of a query q over graph G (the set of mappings) as q(G)

We define the arity of a query as the arity of its answer

if an outer projection (SELECT) it is defined by |distinguished variables|
otherwise |all free variables of the query|

Definition (Query containment)

Given two queries q1 and q2 with the same arity, we say that q1 is contained in q2,
written q1 v q2 if and only if q1(G) ⊆ q2(G) for every graph G .
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Generalisation to Graphs in practice

Complexity Results on SPARQL Query ContainmentA:42

Table X. A summary of the results on the containment of SPARQL queries.

Graph pattern Schema
Language

Entailment
Regime

Complexity of Containment

SP
A

R
Q

L

AND -

simple RDF

NP [Chandra and Merlin 1977]
AND-UNION - NP [Chandra and Merlin 1977]
OPT - ΠP

2 [Letelier et al. 2012]
AND-OPT - ΠP

2 [Letelier et al. 2012]
AND-UNION-OPT - undecidable [Chekol 2012]
MINUS - 2ExpTime [Chekol 2012]

SP
A

R
Q

L

AND ALCH simple RDF 2ExpTime*
AND-UNION ALCH simple RDF 2ExpTime*
AND-UNION ρDF ρDF ExpTime*
AND-UNION RDFS RDFS ExpTime*
AND-UNION ALCH OWL-ALCH ExpTime-complete [Chekol 2012]
OPT - - -
AND-OPT - - -
MINUS - - -

P
SP

A
R

Q
L AND -

simple RDF

2ExpTime*
AND-UNION - 2ExpTime*
OPT - -
AND-OPT - -
MINUS - -

P
SP

A
R

Q
L AND ALCH simple RDF 2ExpTime*

AND-UNION ALCH simple RDF 2ExpTime*
AND-UNION RDFS ρDF ExpTime*
AND-UNION RDFS RDFS ExpTime*
AND-UNION ALCH OWL-ALCH ExpTime-complete [Chekol 2012]
OPT - - -
AND-OPT - - -
MINUS - - -

8. CONCLUSION
We now summarize the main contributions of this work, and propose further research
directions. Having well-behaved computational and model theoretic properties and im-
plementations that have been put to practice, µ-calculus has been chosen for the task
of static analysis of SPARQL queries. µ-calculus formulas are interpreted over tran-
sition systems. SPARQL queries are evaluated over RDF graphs, these graphs can be
transformed to other types of graphs: hypergrahs, bipartite graphs, transition systems
and others. Thus, given a graph logic, RDF graphs can be translated into transition
systems and SPARQL queries into µ-calculus formulas, consequently the formulas can
be interpreted over transition systems.

Containment of queries can be reduced to satisfiability test by encoding the set in-
clusion as implication and the queries as formulas. In order to do this, we proposed
to translate queries and ALCH axioms into µ-calculus formulas. The principle of the
translation is based on reification where each triple is represented by a node, connected
to the subject, predicate and object elements of the query. The encoding of the right-
hand side query is different from that of the left due to the non-distinguished variables
that appear in cycles in the query. In fact, this is the reason for the high complexity
bounds in containment problems in general. Finally, the soundness and completeness
of the reduction is proved and a double exponential upper bound complexity is estab-
lished for the problem.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.
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Generalisation to Graphs in practice

Zoom on the Logical Approach in Practice

1 The µ-calculus (with backward modalities) is expressive enough to encode queries
and schema axioms [IJCAR’12, AAAI’12]

RDF graphs G (P)SPARQL queries q Schema axioms S
↓ σ ↓ A ↓η

Transition systems σ(G) µ-calculus formulae A(q) η(S)

2 query containment (under S) is reduced to unsatisfiability in µ-calculus :

q vS q′

↓
unsat(η(S) ∧ A(q) ∧ ¬A(q′) )
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NB: query containment is solved without fully capturing the semantics of queries
required for evaluation
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Generalisation to Graphs in practice

Zoom on the Logical Approach in Practice

1 The µ-calculus (with backward modalities) is expressive enough to encode queries
and schema axioms [IJCAR’12, AAAI’12]

RDF graphs G (P)SPARQL queries q Schema axioms S
↓ σ ↓ A ↓η

Transition systems σ(G) µ-calculus formulae A(q) η(S)

2 query containment (under S) is reduced to unsatisfiability in µ-calculus :

q vS q′

↓
unsat(η(S) ∧ A(q) ∧ ¬A(q′) )

NB: query containment is solved without fully capturing the semantics of queries
required for evaluation

Statistics on DBpedia (Wikipedia “RDF-ized”) query logs

More than 90% of ∼ 3M queries are acyclic → we can use µ-calculus over graphs or
even Lµ over trees!
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Generalisation to Graphs in practice

Experimental Findings [ISWC’13]

System proj UCQ opt blanks cycles RDFS
SPARQL-Algebra

√ √

AFMU
√ √ √ √

TreeSolver (Lµ)
√ √ √ √

Figure: Results for a q v q′ UCQProj test suite (logarithmic scale).
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Generalisation to Graphs in practice

Example

q(y) = (y , type, city) · (y , x ,Grenoble) · (x , owl:equivalentProperty, train)
q′(y) = (y , type, city) · (y , tramway,Grenoble)
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Generalisation to Graphs in practice

Example

q(y) = (y , type, city) · (y , x ,Grenoble) · (x , owl:equivalentProperty, train)
q′(y) = (y , type, city) · (y , tramway,Grenoble)

q′(y) ⊆DL q(y)

→ The answer of q′ can be computed by filtering the answer of q

may avoid a join (more generally)
particularly interesting in a distributed setting: filters can be computed
without data transfer
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Synthesis of distributed code

Outline

1 What can be achieved with trees
theory: logical formulas
algorithm: decision procedure
practical applications (overview)

2 Generalization to graphs
problems, fundamental limits, possibilities
SPARQL query containment (theory and practice)

3 Overview of on-going work: synthesis of distributed code
The SPARQLGX system
Perspectives
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Synthesis of distributed code

Synthesis of distributed code

Context and approach

Scalability with massive datasets → distribution of data and computations

Big data platforms: performances can vary 1-100x depending on the primitives used

Idea: generate optimized distributed code
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Synthesis of distributed code

Context and approach

Scalability with massive datasets → distribution of data and computations

Big data platforms: performances can vary 1-100x depending on the primitives used

Idea: generate optimized distributed code

The SPARQLGX system

A distributed query evaluator [ISWC’16]

Evaluates SPARQL queries by compilation to big data platforms

Three steps:
1 Data preparation stage: loading / distributing RDF data
2 Query compilation into Spark code (with e.g. map/reduce)
3 Distributed query evaluation
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Synthesis of distributed code

RDF data distribution

1 Vertical Partitioning
split per predicate: keep two-column files (natural compression and indexing)
adapted for RDF (predicates rarely variable in queries [Gallego et al. 2011])

dataset
Dutch School type Museum
Dutch School creationDate 2016
Dutch School use Louvre

Louvre type Museum
Rembrandt type Painter

Hals type Painter
Vermeer type Painter
Van Dyck type Painter
Collection shows Rembrandt

Dutch School mainTopic Rembrandt
Dutch School shows Rembrandt
Dutch School shows Hals
Dutch School shows Vermeer
Dutch School shows Van Dyck

type
Dutch School Museum

Louvre Museum
Rembrandt Painter

Hals Painter
Vermeer Painter
Van Dyck Painter

shows
Collection Rembrandt

Dutch School Rembrandt
Dutch School Hals
Dutch School Vermeer
Dutch School Van Dyck

creationDate
Dutch School 2016

use
Dutch School Louvre

mainTopic
Dutch School Rembrandt

2 Each two-column file is split in chunks that are distributed on cluster nodes
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Synthesis of distributed code

Compiling SPARQL queries into distributed code

?s type Museum .
?g type Painter .
?s shows ?g
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Synthesis of distributed code

Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples

?s type Museum .
?g type Painter .
?s shows ?g

tp1=sc.textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Museum”)}
.map{case(s,o)=>s}
.keyBy{case(s)=>s}
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tp1=sc.textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Museum”)}
.map{case(s,o)=>s}
.keyBy{case(s)=>s}

tp2=sc.textFile(“type.txt”)
.filter{case(g,o)=>o.equals(“Painter”)}
.map{(g,o)=>g}
.keyBy{case(g)=>g}
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Synthesis of distributed code

Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples

?s type Museum .
?g type Painter .
?s shows ?g

tp1=sc.textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Museum”)}
.map{case(s,o)=>s}
.keyBy{case(s)=>s}

tp2=sc.textFile(“type.txt”)
.filter{case(g,o)=>o.equals(“Painter”)}
.map{(g,o)=>g}
.keyBy{case(g)=>g}

tp3=sc.textFile(“shows.txt”)
.keyBy{case(s,g)=>(s,g)}
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Synthesis of distributed code

Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples
2) Translation of conjunctions is all about joining

?s type Museum .
?g type Painter .
?s shows ?g

tp1=sc.textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Museum”)}
.map{case(s,o)=>s}
.keyBy{case(s)=>s}

tp2=sc.textFile(“type.txt”)
.filter{case(g,o)=>o.equals(“Painter”)}
.map{(g,o)=>g}
.keyBy{case(g)=>g}

tp3=sc.textFile(“shows.txt”)
.keyBy{case(s,g)=>(s,g)}

bgp=tp1.cartesian(tp2).values
.keyBy{case(s,g)=>(s,g)}
.join(tp3).value
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Synthesis of distributed code

Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples
2) Translation of conjunctions is all about joining

?s type Museum .
?g type Painter .
?s shows ?g

tp1=sc.textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Museum”)}
.map{case(s,o)=>s}
.keyBy{case(s)=>s}

tp2=sc.textFile(“type.txt”)
.filter{case(g,o)=>o.equals(“Painter”)}
.map{(g,o)=>g}
.keyBy{case(g)=>g}

tp3=sc.textFile(“shows.txt”)
.keyBy{case(s,g)=>(s,g)}

bgp=tp1.cartesian(tp2).values
.keyBy{case(s,g)=>(s,g)}
.join(tp3).value

.cartesian() + .join()!
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Synthesis of distributed code

Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples
2) Translation of conjunctions is all about joining

?s type Museum .
?g type Painter .
?s shows ?g More efficient strategy:

tp1=sc.textFile(“shows.txt”)
.keyBy{case(s,g)=>s}

tp2=sc.textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Museum”)}
.map{case(s,o)=>s}
.keyBy{case(s)=>s}

tp3=sc.textFile(“type.txt”)
.filter{case(s,o)=>o.equals(“Painter”)}
.map{case(g,o)=>g}
.keyBy{case(g)=>g}

bgp=tp1.join(tp2).values
.keyBy{case(s,g)=>(g)}
.join(tp3).value
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Synthesis of distributed code

More general optimizations

Key objective: minimizing the size of intermediate results

Avoid cartesian products → prefer joins, filters when possible
Exploit statistics on data → heuristics for ordering joins
Compress prefixes
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Synthesis of distributed code

Experimental Results (Excerpt) [ISWC’16]
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Synthesis of distributed code

Further Perspectives

Improve the synthesis of distributed code:

leverage data statistics to choose appropriate joins (hashjoin, broadcast join..)
exploit schema constraints (e.g. Shape Expressions)
static analysis for workflows of queries
static analysis for updates

Extension to property graphs

property values on nodes and edges (more expressive than RDF, JSON)

Extension to more expressive queries

regular paths?
emerging standards for graph queries: openCypher, G-CORE

Thank you!
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