Queries for Trees and Graphs:
Static Analysis and Code Synthesis

Pierre Genevés

pierre.geneves@cnrs.fr

Fribourg — March 27th, 2018

1/32



Context

@ A major challenge of our time: extracting information from massive complex data
@ High-level queries essential

@ Big data platforms rapidly evolving

e Performances can vary by an order of magnitude depending on primitives

@ Predictive analytics with medical data, queries (33M patients, 3B records):
@ centralized: 6 days — distributed: 40 min — distributed (optimized): 2 min
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@ A major challenge of our time: extracting information from massive complex data
@ High-level queries essential

@ Big data platforms rapidly evolving

e Performances can vary by an order of magnitude depending on primitives
o Predictive analytics with medical data, queries (33M patients, 3B records):

@ centralized: 6 days — distributed: 40 min — distributed (optimized): 2 min
Challenges
@ Reduce the gap between high-level queries and low-level efficient distributed code
@ Distribute data and computations appropriately

@ Support more expressive queries

Renewed interest in static analysis:
© analyse/optimize queries first!

@ compile them into efficient and scalable distributed code!
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Static Analysis Examples

g: query d: database instance q(d): results of evaluting g over d

@ Query equivalence: ¢ is equivalent to gz if for every d, we have g1(d) = g2(d)
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Static Analysis Examples

g: query d: database instance q(d): results of evaluting g over d

Query equivalence: q; is equivalent to g if for every d, we have g:1(d) = g2(d)

@ Query containment: gi is contained in g2, denoted g1 C g, if for every d, we have
q1(d) C q2(d)
@ Query satisfiability, in the presence of constraints S: a query q is satisfiable if there

exists some d satisfying S such that g(d) # 0

@ Query-update independence analysis: g is independent from an update u if we have
q(d) = q(u(d)) for all d (where u(d) denotes the updated database)

Static type-checking of transformations

Major applications: early detection of errors, query optimisation, redundancy elimination,
faster access control (costs deferred at compile-time), improved compilation, etc.
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Typical Situation

Static analysis tasks

@ Typical complexity: usually very high when decidable (e.g. lucky if in EXPTIME)

@ Typical query size: small (independent from dataset size)
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Typical Situation

Static analysis tasks

@ Typical complexity: usually very high when decidable (e.g. lucky if in EXPTIME)

@ Typical query size: small (independent from dataset size)

Query evaluation

@ Typical complexity: usually low (e.g. linear/polynomial-time)

@ Typical dataset size: huge

A few seconds of static analysis can save hours of distributed computations...

Better analyse once!

Main scientific challenge (hard problem): reasoning over every database instances d
(infinite sets)
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Outline

© What can be achieved with trees

o theory: logical formulas
o algorithm: decision procedure
o practical applications (overview)

@ Generalization to graphs

o problems, fundamental limits, possibilities
e SPARQL query containment (theory and practice)

© Overview of on-going work: synthesis of distributed code

o The SPARQLGX system
o Perspectives
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The Logical Approach to Static Analysis

queries, constraints

XSIT JSON
b5y e iy \
xn ‘ \ = |' Compilers
v 2 n

T Logical For/ Mt

\_/

unsatisfiable — . é
" (bug cannot occun)
—
T satisfiable

(bug can occur)

Counter-Example Generator | ——> %

Data structure instance
illustrating the bug

@ Expressive unifying modal logics for reasoning on data structures d
© Compilers — formalising the initial problem as a reasoning/decision problem
© Novel exact decision procedures — satisfiability testing

Tested formula: = where ¢ is a desired guarantee (e.g. g1 C g2)

@ Algorithmic/implementation techniques (seeking to avoid worst-cases)
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Starting with Trees

Finite binary labeled trees

@ They model finite ordered unranked labeled trees (wlog)

@ Bijective encoding of unranked trees as binary trees (first child, next sibling):
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Formulas of the £, Logic (roci1s)

@ Programs o € {1,2,1,2} for 1/J
navigating binary trees (@ = «) ®) )
Ly, = formula
T true
p | —-p atomic prop (negated)
n | -n nominal (negated)

(Y | —{(a) T existential (negated)
uX.p unary fixpoint (finite recursion)
uXi.i in n-ary fixpoint

|
|
| eVvY | @Ay disjunction (conjunction)
|
|
|
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Trees: theory

Sample Formula and Satisfying Binary Tree

an{(2)b @\
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Trees: theory

Sample Formula and Satisfying Binary Tree

(an(2)b) AuX.(2)cv (1) X <
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Sample Formula and Satisfying Binary Tree

(an(2)b) ApuX.(2)cV(I) X @/

@ Semantics: models of ¢ are finite trees for which ¢ holds at some node

V" Interesting balance between succinctness and expressive power: many queries and
constraints (e.g. schemas) can be translated into the logic, linearly
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Example: Translation of an XPath Query into £,

XPath semantics: sets of nodes
L, formula holds at selected nodes
Binary tree representation:

3

/ Absolute expressions refer to the root:
/0\“””’” S@®TA-@T
@ More generally, we have a compiler for
d ’ C)\ g Y P

XP AT T o LAV )

uZ.p : finite recursion

Converse programs are crucial

Ny \N
b) a) ® @ Schema constraints can be translated
as well (n-ary fixpoint for mutual
recursion)

Translated query: child::a  [child::b]

aN(pZ(T)yxv{(2)Z) A (LHpY.bv ()Y
- _l;_/
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Translation of Schema Constraints into £,: Example

<!ELEMENT article

(meta, (text | redirect))>
<!ELEMENT meta

(title, status?,

interwiki*, history?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT interwiki (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT history (edit)+>
<!ELEMENT edit

(status?, interwiki*,

(text | redirect)?)>
<!ELEMENT redirect EMPTY>
<!ELEMENT text (#PCDATA)>

Figure: Frag. of Wikipedia DTD

let_mu

>
N
|

X3

X4

X5

X6

X7
X8

X9
X10=
in X10

Figure: Corresponding linear-size £,, Formula

= text

& ~(<I>T) & ~(<2>T)

redirect & ~(<1>T) & ~(<2>T)

interwiki & ~(<1>T) & (~(<2>T) | <2>X2),
text & ~(<I>T)) & ~(<2>T))

redirect & ~(<1>T) & ~(<2>T)

interwiki & ~(<1>T) & (~(<2>T) | <2>X2)
status & ~(<I>T) & (~(<2>T) | <2>X2),
edit & (~(<1>T) | <1>X3) & ~(<2>T))

edit & (~(<1>T) | <1>X3) & <2>X4)),
history & <1>X4 & ~(<2>T)

interwiki & ~(<1>T) & (~(<2>T) | <2>X5),
history & <1>X4 & ~(<2>T)

interwiki & ~(<1>T) & (~(<2>T) | <2>X5)
status & ~(<I>T) & (~(<2>T) | <2>X5)),
title & ~(<1>T) & (~(<2>T) | <2>X6),
text & ~(<I>T) & ~(<2>T)

redirect & ~(<I>T) & ~(<2>T),

meta & <1>X7 & <2>X8,

article & <I>X9 & ~(<2>T) & ~(<-1>T) & ~(<-2>T)
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Deciding £, Satisfiability

Is a formula ¢ € L, satisfiable?

@ Given 1), determine whether there exists a finite tree that satisfies ¢

o Validity: test —p

Principles: Automatic Theorem Proving
@ Search for a proof tree
@ Build the proof bottom up:

"“if ¢ holds then it is necessarily somewhere up’
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Search Space Optimization

Idea: Leveraging the fact that Truth Status is Inductive
@ The truth status of ¥ can be expressed as a function of its subformulas
@ For boolean connectives, it can be deduced (truth tables)

@ Only base subformulas really matter: Lean()

Lean(y): [@T[@T[@T[@T] = [ v | « [@e|@¢]
topological propositions atomic props in ¢  modal subformulas
A Tree Node: Truth Assignment of Lean(v)) Formulas
@ With some additional constraints, e.g. ~@ Tv-@)T J
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Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree J

@ A set of nodes is repeatedly updated (fixpoint computation)
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Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree J

@ Step 1: all relevant leaves are added
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Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree J

@ Step i > 1: all possible parents of previous nodes are added
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Satisfiability-Testing Algorithm: Principles

Compatibility relation between nodes

@ Nodes from previous step are proof support:
() ¢ is added if ¢ holds in some node added at previous step
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Progressive bottom-up reasoning (partial satisfiability) J

@ (@) ¢ are left unproved until a parent is connected
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Trees: decision procedure

Satisfiability-Testing Algorithm: Principles

Termination

@ If ¢ is present in some root node, then 1 is satisfiable

@ Otherwise, the algorithm terminates when no more nodes can be added
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Satisfiability-Testing Algorithm: Principles

Main Results [PLDI'07, IJCAI'15a, TOCL'15]

@ L, is closed under negation
@ For ¢ € L, sat(1) decidable in time 2°(tean(¥)D)

@ In practice: fast enumeration using symbolic techniques (BDDs)
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n procedure

Try it online®: http://tyrex.inria.fr/websolver

XML Static Analysis and Type Checking: Online Web Solver
J [} xoaL static Analysis and Type C.. v

Page précédente Page suivante | [ http://wam.inrialpes.fr/

v | Actualiser Aréter Goagle Q) Accueil Marque-pages ~

XML Reasoning Solver Project

Home | Deme Documentation Publications Team

Enter your formula below:

)= { See user manual or pick an example
) = let S1'= (_a * $1) | {nil} in $1;
=1letSo= (a* a*so) | 0
) = let Se = (La*+ _a+ Se)

}) in So;
Se;

XPath Satisfiability #1
XPath Satisfiability #2
XPath Containment
XPath Equivalence

nsubtyps ( (dd() - (trued) & (even() = {falzel), List() —> beol() )

Mu-formula with recursion

XHTML Type Evolution

MathML Query Evolution

Polymorphism with arrow types #1
with arrow types #2

Reqular expreseion intersection

Reqular expression equivalence

N
cecee

» Advanced Options Check Satisfiability

This online demo is a 100% Java implementation of the solver that runs inside a Tomcat serviet. It is based on a thread-sale re-implemention of a BDD
package (JavaBDD). However, the performance of this package is very slow compared to what can be achieved with an off-line solver implementation with
native BDDs. Ask us if you are interested in the high-speed off-ine version of the solver.

* or offline if performance is critical: the offline version is faster (native BDD library,
further optimizations like compression of symbols)
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http://tyrex.inria.fr/websolver

Applications
This solver is reused as the essential component to solve diverse practical problems:

@ Query containment, equivalence and satisfiability for the navigational XPath
fragment, in the presence of regular tree constraints (schemas) [PLDI'07, ICDE'10]
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Applications

This solver is reused as the essential component to solve diverse practical problems:

@ Query containment, equivalence and satisfiability for the navigational XPath
fragment, in the presence of regular tree constraints (schemas) [PLDI'07, ICDE'10]

and also:

Static type checking for XQuery transformations [ICFP’15]
Impact of schema evolutions [ICFP'09, WWW'10, TOIT'11]

Deciding subtyping with functions/polymorphism [ICFP'11, TOPLAS'15]

Verification of layouts & CSS style sheets [www'12, 1JCAI'15b]

University of Washington (USA): query intersection in analysing web page scripting
University of Maryland (USA): analysing access control policies (e.g. XACML)
University of Edinburgh (UK): query containment for XML databases

Institute of CS-FORTH (Greece): access control system for documents

University of British Columbia (Canada): software engineering for the cloud

Universitat Stuttgart (Germany): analysis of BPEL data flows
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Trees: practical applications

Overview of Experiments with Static Analyzers

Sample Problem Lean Size Time

Simple RE intersection & equivalence 30 15 ms

Query containment g C g’ (XPath) 50 50 ms

Query satisfiability with constraints (e.g. SMIL 1.0) 90 350 ms
Subtyping with rich types 60 70 ms

Schema evolution (moderate: e.g. XHTML-Basic) 170 25s
Schema evolution (large: e.g. MathML) 290 8s

Schema evolution (huge & complex, with attributes) 550 727
)
)

Analysis of style sheets (many such calls 60 40 ms
Precise typing for XQuery (many such calls 70 35 ms
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Query containment g C g’ (XPath) 50 50 ms

Query satisfiability with constraints (e.g. SMIL 1.0) 90 350 ms
Subtyping with rich types 60 70 ms

Schema evolution (moderate: e.g. XHTML-Basic) 170 25s

Schema evolution (large: e.g. MathML) 290 8s
Schema evolution (huge & complex, with attributes) 550 727
Analysis of style sheets (many such calls) 60 40 ms

Precise typing for XQuery (many such calls) 70 35 ms

For some test, size of the Lean is 550. The search space is 2°°° ~ 10%®... more than the
square number of atoms in the universe 108°

o0
~
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Overview of Tree Logics

@ On the theoretical side: £,, offers an interesting expressivity, succinctness, optimal

complexity bound

/
1968 1977 1981 1983 | 2015
/ \
L 4 L 4 L 2 L 4 + L 2 x
I

1
PDL - ! Ly \
WS2S (tree) CTL  p-calculus ! forward 4 Lackward |
I (for finite trees) |
1 I
Expr.: MSO ? (<Ms0O) FO MSO \\ MSO ,’
Sat.: Non-elementary EXPTIME EXPTIME EXPTIME \\ 20(n) ,’

Impl.: MONA ? ? ? '\ Ly Solver

\ /
\ 7/
N ,

On the practical side:

@ except (hyperexponential) MONA, this is one of the rare implementation available
of a satisfiability solver for such an expressive logic

15 /32



Outline

© What can be achieved with trees

e theory: logical formulas
e algorithm: decision procedure
e practical applications (overview)

@ Generalization to graphs

o problems, fundamental limits, possibilities
e SPARQL query containment (theory and practice)

© Overview of on-going work: synthesis of distributed code

o The SPARQLGX system
o Perspectives
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Generalisation to Graphs: problems, limits, possibilities

Fundamental Limits in Static Analysis: The Big Picture

The situation with the most expressive/robust graph logics

@ u-calculus: £, formulas with greatest fixpoint, interpreted over graphs
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Fundamental Limits in Static Analysis: The Big Picture

The situation with the most expressive/robust graph logics

@ u-calculus: £, formulas with greatest fixpoint, interpreted over graphs
@ 3 critical features: backward modalities, nominals, graded modalities

o the 3 features together: resulting logic is undecidable
e any 2 of them: decidable logics, hard algorithmic challenges for implementation

4

Limits and possibilities
@ with backward modalities:
o choose between nominals (URIs) or graded modalities (functional roles)
@ Without backward modalities:

o the p-calculus admits the Finite Tree Model Property:
o sat. over graphs iff ¢ sat. over finite trees

— Possible reduction to the search of a finite tree: £, solver reusable!
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Generalisation to Graphs: problems, limits, possibilities

Application to RDF and SPARQL

The RDF data model is powerful

@ predicates can also be subjects

@ backward modalities seem to be required to capture the RDF data model
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Generalisation to Graphs: problems, limits, poss

Application to RDF and SPARQL

The RDF data model is powerful

@ predicates can also be subjects

@ backward modalities seem to be required to capture the RDF data model

Graph query languages (ex: SPARQL) introduce other difficulties

@ semantics of queries: bags (multisets) of mappings of variables to RDF terms

e query containment undecidable under bag semantics (for UCQs)
e sets of mappings are most often considered in the literature
e set semantics: A sets of mappings of variables, not sets of nodes!

@ cyclic dependencies between variables

@ queries of different arities

One can still check query containment for SPARQL fragments!

One reason for that: query containment can be solved without fully capturing the

semantics of queries required for evaluation
18 /32




Generalisation to Graphs in practice

Zoom on RDF Graphs

In the RDF standard (W3C), a graph is a set of triples (s, p, 0)

D ’7
2016 creationDate Dutch School

mainTopic,

shows

Collection

use

typi

type

Hals

hows,

type

\/ermeer
E

Palnter

hows

Van Dyck

subject  predicate object
Dutch School type Museum
Dutch School  creationDate 2016
Dutch School use Louvre
Louvre  type Museum
Rembrandt  type Painter
Hals  type Painter
Vermeer  type Painter
Van Dyck  type Painter
Dutch School mainTopic Rembrandt
Collection  shows Rembrandt
Dutch School  shows Rembrandt
Dutch School  shows Hals
Dutch School shows Vermeer
Dutch School  shows Van Dyck
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Zoom on Core SPARQL Queries

— A Triple Pattern: RDF triple with variables

?s type Museum

mainTopic,

shows

Collection
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Zoom on Core SPARQL Queries
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Zoom on Core SPARQL Queries

— A Triple Pattern: RDF triple with variables
— A Basic Graph Pattern: conjunction of triple patterns

Louvre

use type:

type 2
?s type Museum

?g type Painter
?s shows 7g

creationDate

< Dutch School

mainTopic,

shows

Collection

?s: Dutch School, Louvre

Semantics

— A mapping: a partial function from variables to RDF terms
— The evaluation of a pattern returns a set of mappings
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use type:

type . ?s type Museum
s

?g type Painter
?s shows 7g

creationDate

< Dutch School
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Zoom on Core SPARQL Queries

— A Triple Pattern: RDF triple with variables
— A Basic Graph Pattern: conjunction of triple patterns

?s type Museum
?g type Painter
?s shows ?7g

?s: Dutch School, Louvre

?g: Rembrandt, Hals, Vermeer, Van Dyck
(?s,7g): (Dutch School,Rembrandt), (Dutch
School,Hals), (Dutch School,Vermeer), (Dutch
School,Van Dyck),(Collection,Rembrandt)

Semantics

— A mapping: a partial function from variables to RDF terms
— The evaluation of a pattern returns a set of mappings
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Generalisation to Graphs in practice

Zoom on Core SPARQL Queries

— A Triple Pattern: RDF triple with variables
— A Basic Graph Pattern: conjunction of triple patterns

mainTopic,

shows

Collection

Semantics

SELECT ?s ?g WHERE {
?s type Museum
?g type Painter
7s shows 7g

}

?s: Dutch School, Louvre

?7g: Rembrandt, Hals, Vermeer, Van Dyck
(?s,7g): (Dutch School,Rembrandt), (Dutch
School,Hals), (Dutch School,Vermeer), (Dutch
School,Van Dyck),(Collection,Rembrandt)

Solution (?s,7g): (Dutch School,Rembrandt),
(Dutch School,Hals), (Dutch School,Vermeer),
(Dutch School,Van Dyck)

— A mapping: a partial function from variables to RDF terms

— The evaluation of a pattern returns a set of mappings

— Final set of mappings obtained by composition (join, union, difference, etc.)
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Generalisation to Graphs in practice

Definition of Query Containment

@ We denote the answer of a query g over graph G (the set of mappings) as q(G)
@ We define the arity of a query as the arity of its answer

o if an outer projection (SELECT) it is defined by |distinguished variables|
o otherwise |all free variables of the query|

Definition (Query containment)

Given two queries g1 and g» with the same arity, we say that g1 is contained in g2,
written g1 C g2 if and only if g1(G) C g2(G) for every graph G.
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Generalisation to Graphs in practice

Complexity Results on SPARQL Query Containment

‘ ‘ Graph pattern ‘ Schema ‘ Entailment Complexity of Containment
Language Regime

AND - NP [Chandra and Merlin 1977]

é’ AND-UNION - NP [Chandra and Merlin 1977]
OPT - . 11}’ [Letelier et al. 2012]

E AND-OPT - simple RDF 117 [Letelier et al. 2012]

“ | AND-UNION-OPT | - undecidable [Chekol 2012]
MINUS - 2ExpTime [Chekol 2012]
AND ALCH simple RDF 2ExpTime*

=] AND-UNION ALCH simple RDF 2ExpTime*

% AND-UNION oDF oDF ExpTime*

o AND-UNION RDFS RDFS ExpTime*

a AND-UNION ALCH OWL-ALCH ExpTime-complete [Chekol 2012]
oPT - - -
AND-OPT - - -
MINUS - - -

= AND - 2ExpTime*

g AND-UNION - 2ExpTime*

E opT ) simple RDF )

E AND-OPT - -
MINUS - -

a AND ALCH simple RDF 2ExpTime*

g AND-UNION ALCH simple RDF 2ExpTime*

§ AND-UNION RDFS pDF ExpTime*

E AND-UNION RDFS RDFS ExpTime*
AND-UNION ALCH OWL-ALCH ExpTime-complete [Chekol 2012]
OPT - - -
AND-OPT - - -
MINUS - - -
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Generalisation to Graphs in practice

Zoom on the Logical Approach in Practice

© The p-calculus (with backward modalities) is expressive enough to encode queries
and schema axioms [IJCAR'12, AAAI'12]

RDF graphs G (P)SPARQL queries g Schema axioms S
Lo 1A n
Transition systems o(G)  p-calculus formulae A(q) n(S)

@ query containment (under S) is reduced to unsatisfiability in u-calculus :

qCs ¢
d
unsat(n(S) A A(q) A—A(q') )
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RDF graphs G (P)SPARQL queries g Schema axioms S
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qCsq
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unsat(n(S) A A(q) A—A(q') )

NB: query containment is solved without fully capturing the semantics of queries
required for evaluation
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Generalisation to Graphs in practice

Zoom on the Logical Approach in Practice

@ The p-calculus (with backward modalities) is expressive enough to encode queries
and schema axioms [IJCAR'12, AAAI'12]

RDF graphs G (P)SPARQL queries g Schema axioms S
lo 1A 7
Transition systems o(G)  p-calculus formulae A(q) n(S)

@ query containment (under S) is reduced to unsatisfiability in p-calculus :

qCs ¢

!
unsat(n(S) A A(g) A —A(q") )

NB: query containment is solved without fully capturing the semantics of queries
required for evaluation

Statistics on DBpedia (Wikipedia "RDF-ized") query logs

More than 90% of ~ 3M queries are acyclic — we can use p-calculus over graphs or
even L, over trees!
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Generalisation to Graphs in practice

Experimental Findings pswcis

System ‘ proj UCQ opt blanks cycles RDFS
SPARQL-Algebra Vv Vv

AFMU Vv Vv Vv 4

ms (log. scale)

O TreeSolver (c y,) = %:.Z’Llljlls

104
10

102

O NN MY L BAD OO Ny LB AS
o A
¥ LE8ERIIF I TR d ey ddad

Figure: Results for a ¢ C g’ UCQProj test suite (logarithmic scale).
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Generalisation to Graphs in practice

Example

q(y) = (v, type,city) - (y, x, Grenoble) - (x, owl:equivalentProperty, train)
q'(y) = (v, type,city) - (y, tramway, Grenoble)
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Generalisation to Graphs in practice

Example

q(y) = (v, type,city) - (y, x, Grenoble) - (x, owl:equivalentProperty, train)
q'(y) = (v, type,city) - (y, tramway, Grenoble)

d'(v) Cou q(y)

— The answer of g’ can be computed by filtering the answer of g

e may avoid a join (more generally)
o particularly interesting in a distributed setting: filters can be computed
without data transfer
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Synthesis of distributed code
Outline

© What can be achieved with trees

e theory: logical formulas
e algorithm: decision procedure
e practical applications (overview)

© Generalization to graphs

e problems, fundamental limits, possibilities
e SPARQL query containment (theory and practice)

© Overview of on-going work: synthesis of distributed code

o The SPARQLGX system
o Perspectives

26 /32



Synthesis of distributed code

Context and approach
@ Scalability with massive datasets — distribution of data and computations
@ Big data platforms: performances can vary 1-100x depending on the primitives used

@ Idea: generate optimized distributed code
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Synthesis of distributed code

Context and approach

@ Scalability with massive datasets — distribution of data and computations
@ Big data platforms: performances can vary 1-100x depending on the primitives used

@ Idea: generate optimized distributed code

The SPARQLGX system
@ A distributed query evaluator [ISWC'16]
@ Evaluates SPARQL queries by compilation to big data platforms
@ Three steps:

@ Data preparation stage: loading / distributing RDF data
© Query compilation into Spark code (with e.g. map/reduce)
© Distributed query evaluation
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RDF data distribution

@ Vertical Partitioning

o split per predicate: keep two-column files (natural compression and indexing)
o adapted for RDF (predicates rarely variable in queries [Gallego et al. 2011])

dataset

type
Dutch School type Museum
Dutch School  creationDate 2016 DUtfh School MUseum
Dutch School use Louvre ouvre useum ionD
Louvre type Museum Rembrandt Painter creationDate
Rembrandt type Painter Hals Painter Dutch School 2016
yP . Vermeer Painter
Hals type Painter Van Dvek Pai
Vermeer type Painter an Yyc ainter BorF S husel C
Van Dyck type Painter utch Schoo ouvre
Collection Rembrandt S ) )
Dutch School mainTopic Rembrandt Collection Rembrandt mainTopic
Dutch School Rembrandt Dutch School Rembrandt Dytch School Rembrar
Dutch School Hals Dutch School Hals
Dutch School Vermeer BUtc: SCEOO: \)/ernseerk
Dutch School Van Dyck utch Schoo an byc

@ Each two-column file is split in chunks that are distributed on cluster nodes
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Compiling SPARQL queries into distributed code

?s type Museum .
7g type Painter .
?s shows 7g

20/32



Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples

?s type Museum .

7g type Painter . tpl=sc.textFile(“type.txt”)

?s shows 7g .filter{case(s,0)=>0.equals(“Museum”)}
.map{case(s,0)=>s}
.keyBy{case(s)=>s}
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1) Translation of triple patterns: load, filter to keep matching triples

?s type Museum .
7g type Painter . tpl=sc.textFile(“type.txt”)
?s shows 7g .filter{case(s,0)=>0.equals(“Museum”)}
.map{case(s,0)=>s}
.keyBy{case(s)=>s}
tp2=sc.textFile(“type.txt”)
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-map{(g,0)=>g}
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Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples
2) Translation of conjunctions is all about joining

?s type Museum .
7g type Painter . tpl=sc.textFile(“type.txt”)
?s shows 7g .filter{case(s,0)=>o0.equals(“Museum”)}
.map{case(s,0)=>s}
.keyBy{case(s)=>s}
tp2=sc.textFile(“type.txt”)
.filter{case(g,0)=>o0.equals(“Painter”)}
.map{(g,0)=>g}
.keyBy{case(g)=>g}
tp3=sc.textFile(“shows.txt”)
.keyBy{case(s,g)=>(s,9)}

bgp=tpl.cartesian(tp2).values

.keyBy{case(s,g)=>(s,g)}
.join(tp3).value
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Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples
2) Translation of conjunctions is all about joining

?s type Museum .
7g type Painter . tpl=sc.textFile(“type.txt”)
?s shows 7g .filter{case(s,0)=>o0.equals(“Museum”)}
.map{case(s,0)=>s}
.keyBy{case(s)=>s}
tp2=sc.textFile(“type.txt”)
.filter{case(g,0)=>o0.equals(“Painter”)}
.map{(g,0)=>g}
.keyBy{case(g)=>g}
tp3=sc.textFile(“shows.txt”)
.keyBy{case(s,g)=>(s,9)}

bgp=tpl.cartesian(tp2).values
-keyBy{case(s,g)=>(s,9)}
.join(tp3).value

A .cartesian() + .join()!

20/32



Compiling SPARQL queries into distributed code

1) Translation of triple patterns: load, filter to keep matching triples
2) Translation of conjunctions is all about joining

?s type Museum .
7g type Painter .
?s shows 7g More efficient strategy:
tpl=sc.textFile(“shows.txt”)
.keyBy{case(s,g)=>s}
tp2=sc.textFile(“type.txt”)
.filter{case(s,0)=>o0.equals(“Museum”)}
.map{case(s,0)=>s}
.keyBy{case(s)=>s}
tp3=sc.textFile(“type.txt”)
.filter{case(s,0)=>o0.equals(“Painter”)}
.map{case(g,0)=>g}
.keyBy{case(g)=>g}

bgp=tpl.join(tp2).values

.keyBy{case(s,g)=>(g)}
.join(tp3).value
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Synthesis of distributed code

More general optimizations

Key objective: minimizing the size of intermediate results

@ Avoid cartesian products — prefer joins, filters when possible
@ Exploit statistics on data — heuristics for ordering joins

@ Compress prefixes
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Synthesis of distributed code

Experimental Results (Excerpt) psweis

10% | e
10% = =
10% = =
Dataset Number of Triples | Original File Size on HDFS 8 | | :
Watdiv-100M 109 million 46.8 GB 10! L L L
Lubm-1k 134 million 72.0 GB Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14
Lubm-10k 1.38 billion 747 GB (c) With Lubm10k (seconds).
Conventional RDF Datastores Direct Evaluator
RYA CliqueSquare | S2RDF | SPARQLGX PigSPARQL
— | Preprocessing (minutes) 35 288 718 24 0
g Footprint (GB) 1.0 30.2 5.2 23.6 16.8
Z QC (seconds) TIMEOUT 333 504 118 6973
5 QF (seconds) 12071 FAIL 771 182 9904
= QL (seconds) 5895 94 490 119 5670
s QS (seconds) 1892 FAIL 805 210 2460
Preprocessing (minutes) 34 157 408 55 0
= Footprint (GB) 16.2 55.8 13.1 39.1 72.0
E Q1 (scconds) 192 461 118 22 226
3 Q2 (seconds) TIMEOUT 105 1599 320 1239
Q14 (seconds) 66 22 86 9 212
. | Preprocessing (minutes) 410 TIMEOUT FAIL 672 0
S Footprint (GB) 177 403 N/A 407 AT
g Q1 (seconds) 1799 524 N/A 305 2272
el Q2 (seconds) TIMEOUT 22093 N/A 19158 18029
= QI4 (seconds) 571 731 N/A 541 2525
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Synthesis of distributed code

Further Perspectives

@ Improve the synthesis of distributed code:

leverage data statistics to choose appropriate joins (hashjoin, broadcast join..)
exploit schema constraints (e.g. Shape Expressions)

static analysis for workflows of queries

static analysis for updates

@ Extension to property graphs

o property values on nodes and edges (more expressive than RDF, JSON)

@ Extension to more expressive queries

o regular paths?
e emerging standards for graph queries: openCypher, G-CORE

Thank you!
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