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A Journey in Big Data for Healthcare

Diverse data sources: sensors, prescription, genome, billing, clinical...

A spectrum of promising big data applications:

What are the associated challenges? Rather Math/Stat/Comp. Sci.?
→ We proposed a predictive analytics use case and addressed it. 2



Prediction of Adverse Effects

Adverse Effects
Undesired harmful effects resulting from medical care
e.g. hospital-acquired infection (HAI), admission in intensive care unit (ICU),

pressure ulcers (PU), death

Prediction

• Almost half of adverse effects “clearly or likely preventable”1

• Crucial (hard) requirement: precise identification of at-risk
profiles
– with adapted prevention: some adverse effects could be avoided
– ex: risk of ICU admission? → better room placement/surveillance

1Physicians: see [Levinson 2010], US Department of Health and Human Services
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Problem

Can we predict, on the day of hospital
admission, future occurrence of adverse

effects?
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State-of-the-Art and Open Questions

State-of-the-Art

• Traditional approach: use a scalar aggregate (score) computed
from electronic health records
– Medication Regimen Complexity Index (MRCI) [Georges et al. 2004]
– Higher levels of MRCI at admission known to be correlated with
higher risks of occurence of complications [Lepelley et al. 2017]

Open Questions:

1. What if we use all high-resolution data available to build
predictors? (instead of designing aggregates) Is it feasible?
Scalable? How fast?

2. Can we measure the effect of volume and variety of big drug
prescription data?

3. What are the computing bottlenecks in practice?
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Outline

1. The system we developed, using distributed machine learning
2. Experimental results with data of millions of patients
3. Elements of answers to the previous questions
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Key Methodological Aspects

Initial Postulate: drug prescription data on the day of admission
contain rich information about the patient’s situation and
perspectives of evolution.

No prior clinical knowledge for the definition of features.
→ We use supervised learning to extract this information

Evaluation of model quality and performance metrics
→ k-fold cross-validation, ROC and PR AUC on imbalanced test sets,
running times for distributed execution.
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System Overview

Distributed implementations of supervised ML algorithms to ensure
scalability of model construction.
→ Key Technologies used: Spark, Spark SQL, MLlib/Spark ML, Docker,
Jupyter Notebooks, Python, Scala.
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Considered Data

Premier Perspective Database, 2006

• 417 hospitals (USA)

• 33 million admissions

• > 3 billion patient billing records
(operations, drugs, everything that
can be billed!... → USA!)

Big Data?
Our experience with the cost of initial data preparation (big joins):

1. big join computed (by chunks) in a centralized manner: 6 days

2. distributed computations: 2 min
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Distributed Supervised Machine Learning

Data: billing records filtered and joined with patient info
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Distributed Supervised Machine Learning

Features (X1,X2,...XN): extracted from patient info (age, gender...)
and drug prescription data on the day of admission.
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Distributed Supervised Machine Learning

Label (Y): a boolean for each considered adverse effect (AE)
1: AE occurred
0: AE did not occur
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Distributed Supervised Machine Learning

Models (f) for binary classification: Decision Trees, Random Forests,
SVM, Logistic Regression, Deep Neural Networks...
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Zoom on Considered Features

We group features into categories:

B: A list of basic patient features: age, gender, admission type
M: An aggregate score that corresponds to MRCI at admission (for

comparisons)
P: The list of drug categories served on the first day
C: The list of detailed drug names served on the first day (with
distinct variants)

Increasing Variety/Granularity
We build models that combine feature categories: BM, BMP, BMC

Number of features can be large:
length(P) > 2 000, length(C) > 10 000
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Binary Classification in Large Dimensions

Simple Academic Example with 2D Feature Vectors:

→ → →
training data trained model new data point prediction

Same principle in > 10 000 dimensions
Sample feature vector in a BMC model

Feature
Index

Feature
Description

Feature
Value

Standard Charge
Master Code

0 Age 15
1 Gender 1
2 MRCI 24

8024 DEXTROSE/NACL SOLUTION 1000ML 1.00 250258000970000
7955 NACL SOLUTION 100ML 2.50 250258000220000
7949 NACL SOLUTION 1000ML 1.00 250258000160000
7084 DOCUSATE NA CAP 100MG 1.00 250257020020000
6654 ACETAMIN TAB 325MG (EA) 2.00 250257000530000
4869 SOD BICARB INJ 8.4% 50MEQ 50ML 1.00 250250058740000
4332 POT CHL VL 20MEQ 10ML 0.50 250250053100000
3566 MORPHINE TAB SR 30MG 0.50 250250044450000

.... .... ... ...
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First Results: Impact of Variety

Area under the ROC curve when Predicting HAI (LR)
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Impact of Volume (HAI Prediction)

1. Train and test sets of varying size (but with constant 2:1 ratio):

ROC AUC Recall (TP/P)
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2. Train sets of varying sizes, same test set:
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→ Increased volume tends to yield greater AuROC and greater recall.
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Different AuROC for Various Adverse Effects
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(a) Death (AUC ≥ 77.9%).
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(b) Pressure Ulcers (AUC ≥ 80.9%).
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(c) ICU Admissions (AUC ≥ 65.6%).
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(d) Hospital-Acquired Infections
(AUC ≥ 80%).

Figure 1: Predicting with BMC Features. 15



Total Computational Cost (LR 3-Cross)
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Zoom: Cost Breakdown
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84 500 instances in train set, 2056 features
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Zoom: Cost Breakdown

Model Evaluation
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Train set: 846600 - Test Set: 423400 - Nb Features: 2056

7x more instances in train set
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Zoom: Cost Breakdown

5x more features
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Scalability with Hardware Resources

Total time for construction and 3-fold cross validation of BMP models w.r.t.
number of cores and RAM·per·executor:
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→ for this use case, it is possible to set resources to maintain an interactive
session for the domain expert (≥ 48 cores, ≥ 16 Gb RAM)
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Scalability with Hardware Resources

• Performance with 48 and 144 cores almost similar
(48Gb RAM)

• Increasing the number of cores (from 48 to 64, from 128
to 144) can worsen performance

What happens?

• Data partitioning matters
• more cores→ more computational power, more partitions→
more data shuffling (transfer)

• less cores→ less partitions→ less data transfert

Non-trivial balance to be found

19



Conclusions on the Use Case

1. Initial postulate reasonable: massive drug prescription data
useful for prediction.

2. More variety (finer-grained features)→ greater model accuracy
(not systematic)

3. More volume→ greater model accuracy

4. Acceptable2 running times→ good distribution of data &
computations

2The domain expert (“clinical data scientist”?) can use interactive sessions for
processing million of instances and thousands of features.
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Article: Big Data Research, 2018

Scalable Machine Learning for Predicting At-Risk
Profiles Upon Hospital Admission. Pierre Genevès,
Thomas Calmant, Nabil Layaïda, Marion Lepelley,
Svetlana Artemova, Jean-Luc Bosson.
Big Data Research, March 2018

Available from: http://tyrex.inria.fr/publications
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Perspectives

Application-specific

• Clinical interpretation (LR models are intelligible, stable weights)
• More sophisticated features and models
• More data, e.g. drug molecular composition

Distributed data-centric programming

• Traditional complexity inappropriate (data transfer)
→ Designing cost-models for these data-driven applications

• Scalability is not trivial to obtain
→ optimizing compilers: synthesis of efficient distributed code

? The CLEAR research project: http://tyrex.inria.fr/clear

Thank you!
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Appendices
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Computational Cost (LR model fit)
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Labels

Considered Adverse Effects (AE):

(1) Death during hospital stay (3.00%: 44 667 cases)
(2) Admission to ICU on or after the second day (excluding patients

directly admitted to ICU on the first day) (3.42%)
(3) Pressure ulcers not present at admission (2.55%)
(4) Hospital-acquired infections (2.54%)

Labels for the train set obtained automatically

• 1 boolean per AE, established from International Classification
of Diseases (ICD9) codes in the database

• Labeling algorithm obtained with the help of clinicians

Classes are imbalanced
On 1 487 867 admissions, > 8% experience at least one AE ∈ {2, 3, 4}
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