On the Prediction of At-Risk Patient Profiles with Big Prescription Data

Pierre Genevès¹ pierre.geneves@cnrs.fr

Joint work with:

Thomas Calmant¹, Nabil Layaïda¹ Marion Lepelley², Svetlana Artemova², Jean-Luc Bosson² March 20, 2018

¹ Tyrex team, CNRS LIG, Inria, Univ. Grenoble Alpes, Grenoble INP, http://tyrex.inria.fr

 2 Univ. Grenoble Alpes, CNRS, Public Health department CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG

A Journey in Big Data for Healthcare

Diverse data sources: sensors, prescription, genome, billing, clinical... A spectrum of promising big data applications:

1 Machine based: evaluation of data correlations only.

² Hypothesis based: integration of advanced analytics to determine causation, interdependencies.

³ Higher business value expected if further enhanced and rolled out as personal health record.

What are the associated **challenges**? Rather Math/Stat/Comp. Sci.? \rightarrow We proposed a predictive analytics **use case** and addressed it.

Adverse Effects

Undesired harmful effects resulting from medical care

e.g. hospital-acquired infection (HAI), admission in intensive care unit (ICU), pressure ulcers (PU), death

Prediction

- Almost half of adverse effects "clearly or likely preventable"¹
- Crucial (hard) requirement: precise identification of at-risk profiles
 - with adapted prevention: some adverse effects could be avoided
 - ex: risk of ICU admission? \rightarrow better room placement/surveillance

¹Physicians: see [Levinson 2010], US Department of Health and Human Services

Can we predict, on the day of hospital admission, future occurrence of adverse effects?

State-of-the-Art

- Traditional approach: use a scalar aggregate (score) computed from electronic health records
 - Medication Regimen Complexity Index (MRCI) [Georges et al. 2004]
 - Higher levels of MRCI at admission known to be correlated with higher risks of occurence of complications [Lepelley et al. 2017]

Open Questions:

- What if we use all high-resolution data available to build predictors? (instead of designing aggregates) Is it feasible? Scalable? How fast?
- 2. Can we measure the effect of volume and variety of big drug prescription data?
- 3. What are the computing bottlenecks in practice?

- 1. The system we developed, using distributed machine learning
- 2. Experimental results with data of millions of patients
- 3. Elements of answers to the previous questions

Initial Postulate: drug prescription data on the day of admission contain rich information about the patient's situation and perspectives of evolution.

No prior clinical knowledge for the definition of features. \rightarrow We use supervised learning to extract this information

Evaluation of model quality and performance metrics \rightarrow k-fold cross-validation, ROC and PR AUC on imbalanced test sets, running times for distributed execution.

System Overview

Distributed implementations of supervised ML algorithms to ensure scalability of model construction.

 \rightarrow Key Technologies used: Spark, Spark SQL, MLlib/Spark ML, Docker, Jupyter Notebooks, Python, Scala.

Considered Data

Premier Perspective Database, 2006

- 417 hospitals (USA)
- 33 million admissions
- > 3 billion patient billing records (operations, drugs, everything that can be billed!... → USA!)

Big Data?

Our experience with the cost of initial data preparation (big joins):

- 1. big join computed (by chunks) in a centralized manner: 6 days
- 2. distributed computations: 2 min

Data: billing records filtered and joined with patient info

Features (X1, X2, ... XN): extracted from patient info (age, gender...) and drug prescription data on the day of admission.

Label (Y): a boolean for each considered adverse effect (AE) 1: AE occurred 0: AE did not occur

Models (f) for binary classification: Decision Trees, Random Forests, SVM, Logistic Regression, Deep Neural Networks...

We group features into categories:

- B: A list of basic patient features: age, gender, admission type
- M: An aggregate score that corresponds to MRCI at admission (for comparisons)
- P: The list of drug categories served on the first day
- C: The list of detailed drug names served on the first day (with distinct variants)

Increasing Variety/Granularity

We build models that combine feature categories: BM, BMP, BMC

Number of features can be large: length(P) > 2 000, length(C) > 10 000

Binary Classification in Large Dimensions

Simple Academic Example with 2D Feature Vectors:

Same principle in > 10 000 dimensions Sample feature vector in a BMC model

Feature	Feature	Feature	Standard Charge
Index	Description	Value	Master Code
0	Age	15	
1	Gender	1	
2	MRCI		
8024	DEXTROSE/NACL SOLUTION 1000ML	1.00	250258000970000
7955	NACL SOLUTION 100ML	2.50	250258000220000
7949	NACL SOLUTION 1000ML	1.00	250258000160000
7084	DOCUSATE NA CAP 100MG	1.00	250257020020000
6654	ACETAMIN TAB 325MG (EA)	2.00	250257000530000
4869	SOD BICARB INJ 8.4% 50MEQ 50ML	1.00	250250058740000
4332	POT CHL VL 20MEQ 10ML	0.50	250250053100000
3566	MORPHINE TAB SR 30MG	0.50	250250044450000

First Results: Impact of Variety

Area under the ROC curve when Predicting HAI (LR)

1. Train and test sets of varying size (but with constant 2:1 ratio):

2. Train sets of varying sizes, same test set:

 \rightarrow Increased volume tends to yield greater AuROC and greater recall.

Different AuROC for Various Adverse Effects

(b) Pressure Ulcers (AUC \geq 80.9%).

(c) ICU Admissions (AUC \geq 65.6%). (d) Hospital-Acquired Infections (AUC \geq 80%).

Figure 1: Predicting with BMC Features.

Total Computational Cost (LR 3-Cross)

Zoom: Cost Breakdown

84 500 instances in train set, 2056 features

Zoom: Cost Breakdown

7x more instances in train set

Zoom: Cost Breakdown

5x more features

Scalability with Hardware Resources

Total time for construction and 3-fold cross validation of BMP models w.r.t. number of cores and RAM·per·executor:

 \rightarrow for this use case, it is possible to set resources to maintain an interactive session for the domain expert (\geq 48 cores, \geq 16 Gb RAM)

Scalability with Hardware Resources

- Performance with 48 and 144 cores almost similar (48Gb RAM)
- Increasing the number of cores (from 48 to 64, from 128 to 144) can worsen performance

What happens?

- Data partitioning matters
- more cores \rightarrow more computational power, more partitions \rightarrow more data shuffling (transfer)
- $\cdot~\mbox{less cores} \rightarrow \mbox{less partitions} \rightarrow \mbox{less data transfert}$

Non-trivial balance to be found

- 1. Initial postulate reasonable: massive drug prescription data useful for prediction.
- More variety (finer-grained features) → greater model accuracy (not systematic)
- 3. More volume \rightarrow greater model accuracy
- 4. Acceptable² running times \rightarrow good distribution of data & computations

²The domain expert ("clinical data scientist"?) can use **interactive sessions** for processing million of instances and thousands of features.

Scalable Machine Learning for Predicting At-Risk Profiles Upon Hospital Admission. Pierre Genevès, Thomas Calmant, Nabil Layaïda, Marion Lepelley, Svetlana Artemova, Jean-Luc Bosson. Big Data Research, March 2018

Available from: http://tyrex.inria.fr/publications

Application-specific

- Clinical interpretation (LR models are intelligible, stable weights)
- More sophisticated features and models
- More data, e.g. drug molecular composition

Distributed data-centric programming

- Traditional complexity inappropriate (data transfer)
 - \rightarrow Designing cost-models for these data-driven applications
- Scalability is not trivial to obtain
 - \rightarrow optimizing compilers: synthesis of efficient distributed code
- * The CLEAR research project: http://tyrex.inria.fr/clear

Thank you!

Appendices

Computational Cost (LR model fit)

Labels

Considered Adverse Effects (AE):

- (1) Death during hospital stay (3.00%: 44 667 cases)
- (2) Admission to ICU on or after the second day (excluding patients directly admitted to ICU on the first day) (3.42%)
- (3) Pressure ulcers not present at admission (2.55%)
- (4) Hospital-acquired infections (2.54%)

Labels for the train set obtained automatically

- 1 boolean per AE, established from International Classification of Diseases (ICD9) codes in the database
- Labeling algorithm obtained with the help of clinicians

Classes are imbalanced

On 1 487 867 admissions, > 8% experience at least one AE $\in \{2, 3, 4\}$