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We show how the analysis of very large amounts of drug prescription data make it possible to detect, on 
the day of hospital admission, patients at risk of developing complications during their hospital stay. 
We explore, for the first time, to which extent volume and variety of big prescription data help in 
constructing predictive models for the automatic detection of at-risk profiles.
Our methodology is designed to validate our claims that: (1) drug prescription data on the day of 
admission contain rich information about the patient’s situation and perspectives of evolution, and (2) 
the various perspectives of big medical data (such as veracity, volume, variety) help in extracting this 
information. We build binary classification models to identify at-risk patient profiles. We use a distributed 
architecture to ensure scalability of model construction with large volumes of medical records and clinical 
data.
We report on practical experiments with real data of millions of patients and hundreds of hospitals. We 
demonstrate how the fine-grained analysis of such big data can improve the detection of at-risk patients, 
making it possible to construct more accurate predictive models that significantly benefit from volume 
and variety, while satisfying important criteria to be deployed in hospitals.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

A major challenge in healthcare is the prevention of complica-
tions and adverse effects during hospitalization. A complication is 
an unfavorable evolution or consequence of a disease, a health con-
dition or a therapy; and an adverse effect is an undesired harmful 
effect resulting from a medication or other intervention. Typical 
examples include for instance pressure ulcers, hospital–acquired 
infections (HAI), admissions in Intensive Care Unit (ICU), and death.

From the perspective of complications, healthcare establish-
ments can be considered as risky environments. For instance, in 
the USA, an estimated 13.5% of hospitalized Medicare beneficia-
ries experienced adverse effects during their hospital stays; and an 
additional 13.5% experienced temporary harm events during their 
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stays1 [1]. However, physician reviewers determined that 44% of 
adverse and temporary harm events were clearly or likely pre-
ventable [1]. Preventable events are often linked to the lack of 
patient monitoring and assessment.

One challenging and very interesting goal is to be able to pre-
dict the patients’ outcomes and tailor the care that certain pa-
tients receive if it is believed that they will do poorly without 
additional intervention. In doing so, hospitals could prevent un-
necessary readmissions, adverse events, or other delays in getting 
well [2]. For instance, if we can precisely identify groups of pa-
tients associated with a very high risk of requiring ICU treatment 
during their stay, then we can optimize their placement as soon 
as they are admitted, by affecting them e.g. to rooms closer to 
ICU, thereby drastically reducing transportation delay in life-critical 
situations in large hospitals. More generally, many complications 
could be avoided by immediate identification of at-risk patients 
upon admission and adapted prevention. A crucial prerequisite to 
any adapted and meaningful prevention is the precise identifica-
tion of at-risk profiles.

1 Temporary harm events are those that require intervention but do not cause 
lasting harm.
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The widespread adoption of Electronic Health Records (EHR) 
makes it possible to benefit from quality information provided by 
healthcare professionals [3]. This opens the way for applying AI 
techniques in building helpful analytics systems for big medical 
data in which we can have a high level of trust – since drug pre-
scriptions engage the responsibilities of healthcare professionals.

This paper aims to develop an automatic prediction system for 
identifying at-risk patients, based on a fine-grained analysis of 
large volumes of electronic health record data. This has long been 
viewed as a more challenging task than conventional prediction 
approaches with summary statistics and EHR-based scores [2,4].

Contributions We show how the analysis of very large amounts 
of drug prescription data make it possible to detect, on the day 
of hospital admission, patients at risk of developing complications 
during their hospital stay. We explore, for the first time, to which 
extent volume and variety of big prescription data help in con-
structing predictive models for the automatic detection of at-risk 
profiles. We report on practical experiments with real data of mil-
lions of patients and hundreds of hospitals. We demonstrate how 
the fine-grained analysis of such big data can improve the de-
tection of at-risk patients, making it possible to construct more 
accurate predictive models that significantly benefit from volume 
and variety, while satisfying important criteria to be deployed in 
hospitals.

2. Methodology

Our methodology is designed to validate our claims that: (1) 
drug prescription data on the day of admission contain rich infor-
mation about the patient’s situation and perspectives of evolution, 
and (2) the various perspectives of big medical data (such as ve-
racity, volume, variety) help in extracting this information.

We thus focus on building binary classification models to iden-
tify at-risk patient profiles, using distributed supervised machine 
learning methods. Our approach involves a fully distributed ar-
chitecture to ensure scalability of model construction with large 
volumes of medical records and clinical data. The machine learning 
models that we build yield predictions at hospital admission time.

2.1. Considered medical data and veracity

We consider real data from United States Hospitals. Our dataset 
features more than 33 million discharges from a representative 
group of 417 hospitals drawn by lot, as provided by the Premier 
Perspective database, which is the largest hospital clinical and fi-
nancial database in the United States. Each individual drug pre-
scription engages the responsibility of the prescriber. Each hospital 
submits quarterly updates of aggregated data. Patient-level data 
go through 95 quality assurance and data validation checks. Once 
the data have been validated, patient-level information is available, 
comprising data consistent with the standard hospital discharge 
file, demographic and disease state information, and information 
on all billed services, including date-specific logs of medications, 
laboratory, diagnostics, and therapeutic services.

The raw data for the year 2006 contains 33 048 852 admissions, 
and more than three billion patient charge records, representing 
2.8 Tb of data.

For our study, we focused on basically two kinds of data: (1) 
population characteristics (age, gender, marital status, etc.) and (2) 
clinical data including all drug prescriptions (dosage, route of ad-
ministration of each drug, etc.) for all admissions.
2.1.1. Filters
We selected adult and adolescent patients (between 15 and 

89 years old2), hospitalized for more than 3 days. We chose this 
minimal length of stay of 3 days in order to ensure enough time 
for manifestation and detection of complications during the stay. 
Other exclusion criteria for the patients were:

• patients hospitalized in surgery, because in surgery medical 
prescription and its complexity varies considerably accord-
ing to preoperative, operative and postoperative phase as de-
scribed in Lepelley et al. [5] and this information was not 
available in the dataset);

• out-patients and consultations;
• those with no drug prescription at admission; without which 

we cannot apply our analysis.

These filters retain 1 487 867 admissions also studied in [5]. We 
further filter out elective admissions, and finally retain a total of 
1 271 733 eligible admissions.

2.1.2. Considered complications and ground truth
To build the complication prediction system, we need labeled 

data for training and evaluation purposes. We consider four com-
plications:

• death during hospital stay;
• admission to ICU on or after the second day (excluding pa-

tients directly admitted to ICU on the first day3);
• pressure ulcers that were not present at admission time but 

developed during the stay;
• hospital–acquired infections developed during the stay.

Labeling a posteriori the occurrence of deaths and admissions 
to ICU is trivial as this information can directly be inferred from 
the medical records. Labeling the occurrence of hospital–acquired 
infections is slightly more involved since one must basically dis-
tinguish secondary infections occurring during hospital stay from 
infections existing before admission. For this purpose, medical ex-
perts guided us to label complications in terms of the International 
Classification of Diseases, Ninth Revision, Clinical Modification 
(ICD-9-CM) codes [6] that are used in medical records, inspired 
from the work of Roosan et al. [7]. We implemented complication 
labeling as a one-pass algorithm that labels each admission with 
the complication(s) that occurred a posteori (if any). This served to 
establish a ground truth, which we use for training models.

2.1.3. Participants and occurrence of complications
Fig. 1 illustrates the distribution of eligible admissions by age 

and gender. The gap in the number of admissions between genders 
for people aged between 15 and 40 years is due to pregnancies. 
The fact that females tend to live longer explains the gap in the 
number of admissions of older people.

Among the overall population, there were 39 988 cases of hos-
pital death (3.14%), 34 076 cases of pressure ulcers complications 
(2.68%), 45 542 cases of ICU admission on or after the second day 
(3.58%), and 32 198 cases of hospital–acquired infections (2.53%). 
On average, the probability that a patient experiences during 
his hospital stay at least one of the considered complications is 
10.43%.

Fig. 2 shows the percentage of occurrence of each complication 
for each of the 417 hospitals considered. The proportion of compli-
cations appears roughly similar between hospitals except for a few 

2 We filtered out other ages because this information was biased in the dataset, 
i.e. age 89 denoting in fact age category 89+.

3 171 892 people were admitted to ICU on the first day: they have been excluded 
from the train and test population for the ICU label.
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Fig. 1. Admissions by age and gender.

Fig. 2. Risk (in %) of occurrence of complications per hospital.

of them (shown by the peaks on Fig. 2). The filters that we ap-
ply (see Section 2.1.1) retain a number of eligible admissions that 
varies between hospitals (leaving for instance 15 859 relevant ad-
missions for one hospital and 2 relevant admissions for another, 
with a mean number of 3568 relevant admissions per hospital). 
The peaks observed on Fig. 2 actually correspond to hospitals hav-
ing a significantly lower number of eligible admissions for our 
study. For instance, the most important peaks correspond to the 
following cases:

Death Hospital 189: 49 out of 209 eligible admissions (23.4%)
ICU Hospital 29: 95 out of 853 eligible admissions (11.1%)
HAI Hospital 378: 6 out of 22 eligible admissions (27.3%)
PU Hospital 189: 57 out of 209 eligible admissions (27.3%)

We consider that for these cases, the low numbers of eligible ad-
missions explain the peaks observed. In the sequel, we abstract 
over the fact that some hospitals might be more prone to the 
development of complications than others. We concentrate on de-
veloping a predictive system intended to work with any hospital.

Fig. 3 illustrates the distribution of drugs served. For each drug 
(on the x-axis), it shows the (logarithmic) number of patients who 
were served the drug on their first day. This shows that, as one 
might expect, some drugs are served to a very large proportion 
of patients4 while other drugs are rarely served, and some almost 

4 For instance, the top three drugs that are the most served on the first day in-
clude respectively “0.9% NACL 1000ML” (served 305 293 times), “PANTOPRAZOLE, 
PROTONIX TAB 40MG” (served 153 971 times), and “ACETAMIN, TYLENOL TAB 
325MG” (served 122 306 times).
Fig. 3. Distribution of drugs served (the y-axis indicates the number of patients to 
which each drug on the x-axis was served).

Fig. 4. Architecture of the prediction system.

never served. One goal of our predictive system is to automatically 
extract information from prescription data (including associations 
of drugs more or less frequently served) relevant for predicting the 
occurrence of complications. The purpose is to create information 
and risk signals usable by clinicians.

2.2. Predictive system

We now review the main principles and choices that we have 
made in designing the prediction system.

2.2.1. Distributed approach
Distributing data and computations was instrumental for pro-

cessing the aforementioned data.5 We thus first review the dis-
tributed approach that made it possible to obtain our results. The 
structure of our prediction system is illustrated in Fig. 4. Initial 
data consist in a set of raw relational tables, that we store in a 
NFS distributed file system. This file system communicates with 
Spark SQL [8] that we use for data preprocessing, integration, and 
filtering. For optimizing the representation of features, we use a 
library for perfect hashing, that we modified and upgraded for 
use in our Spark and Python environments, based on the work of 
Czech et al. [9]. The feature engineering and classification com-
ponents are hand coded in Spark [10] and SparkML [11]. We use 
distributed implementations of Logistic Regression (LR) [12], Linear 
Support Vector Machines (LSVM) [13], Decision Trees (DT) [14] and 

5 Initial attempts with the Pandas library on a single machine with 160 GB of 
RAM were non-conclusive. Only a fraction of the dataset was fitting in memory 
(after joining and filtering made using a distributed algorithm) and yet no trans-
formation requiring copies (e.g. joins) was possible. We tried to compute joins by 
chunks and finally stopped the computation after 3 days (for an estimated time of 
at least 6 days).
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FP-Growth [15]. We also used t-SNE [16] and facilities provided by 
Pandas and Scikit-Learn libraries on smaller excertps of data that 
were extracted and preprocessed with Spark. We use Docker [17]
to improve the runtime performance of the distributed architecture 
(mainly input/output) compared to a traditional approach with vir-
tual machines. We automatically deploy custom Docker images on 
each machine of the cluster. The use of Docker also facilitates 
deployment on commodity and heterogeneous machines. We use 
Jupyter Notebooks as a prototyping frontend.

Our cluster is composed of 5 machines each equipped with 2 
Intel(R) Xeon(R) from 1.90 GHz to 2.6 GHz, with 24 to 40 cores, 
and between 60 GB and 160 GB of RAM. The network is 1 GB
ethernet.

2.2.2. Feature engineering
The distributed architecture makes it possible to consider many 

features per patient. We have explored many combination of pos-
sible features, going from individual attributes such as the age and 
gender of a patient, to features describing in more or less details 
the drugs served on the first day for that patient.

For a given patient, we also consider a specific “score” of-
ten used in the clinical literature and readily available in hospi-
tal EHRs: the Medication Regimen Complexity Index (MRCI) [18]. 
MRCI is one of the most valid and reliable scale for assessing reg-
imen complexity [19].6 The MRCI score is meant to reflect the 
complexity of the patient’s situation. The greater the MRCI, the 
more complex the patient’s situation is. While the minimum MRCI 
score is 2 (e.g. one tablet taken once a day as needed), there is no 
maximum score. We retained MRCI as a marker of risk. We also 
include it in our study for the purpose of comparison with earlier 
works such as the one of Lepelley et al. [5].

We performed data mining on the dataset and used statistical 
techniques to search and select basic features among the popu-
lation characteristics. For example, A 7.9% overall correlation was 
found between patient’s age and occurrence of death during hos-
pital stay. Fig. 5 illustrates the distribution of MRCI levels among 
the considered population; and Fig. 6 illustrates the percentage of 
people who expired at the hospital in terms of their MRCI level at 
admission. A 4.7% overall correlation was found between the MRCI 
value at admission and death at the hospital. In the sequel we in-
vestigate and report to which extent such correlations can actually 
be exploited for prediction purposes.

We tested different sets of features for building predictive mod-
els based on analyses of varying granularity. For the sake of clarity 
when reporting our results, we define categories of features and 
use naming conventions.

For each admission, we concentrate on the following features, 
grouped by named categories:

• A list B of basic features including patient age, gender, and 
admission type (e.g. whether the patient is admitted from a 
doctor’s office and requiring acute care for e.g. pneumonia or 
dehydration; or whether the patient in life-threatening condi-
tion such as accident victim).

6 Specifically, MRCI is a global score aggregating 65 sub-items for the purpose 
of indicating the complexity of a prescribed medication regimen. The MRCI has 3 
sections giving information on the dosage form (section A), dosing frequency (sec-
tion B) and additional instructions (section C) with 32, 23 and 10 items respectively. 
Each section reflects a different aspect of the complexity of prescription regimen. 
The total MRCI score is the sum of subscores for the 3 sections. MRCI is readily 
available in hospital EHRs but for our study, we had to recompute it from our pre-
scription data. We computed it following the Appendix II of [19] which describes 
how to compute a score for each section. The only approximation is that our con-
sidered dataset lacks data required for computing the subscore for section C, which 
we thus arbitrarily set to zero. In the sequel, the total MRCI score is thus the sum 
of sections A and B.
Fig. 5. MRCI levels in the considered population.

Fig. 6. Risk of death in terms of MRCI level at admission.

• A score M that corresponds to MRCI at admission.
• A list C of clinical quantities associated to drugs prescribed 

on the first day. The length of C is the number of all drugs 
possibly prescribed during the first day in any hospital: there 
are more than 10 thousands such drugs. For example, Table 1
shows a sample vector including clinical quantities of drugs 
served on the first day. Since only a few drugs are served 
to each patient on the first day (compared to the length of
C), we adopt a sparse representation for features in memory. 
In addition, we also consider an alternative choice of feature 
representation where drugs are grouped into drug categories. 
A drug category regroups drug variants with e.g. different 
dosage. A category typically regroups 10 drug variants. Thus, 
as an alternative to the original list C we also consider a list
P of integer values (with one integer per category of drugs) 
indicating the number of drugs served on the first day in the 
category. Specifically, with our dataset, C contains 10 739 en-
tries and P has 2046 entries.

Table 1 illustrates a sample feature vector for a 15 years-old 
patient, who was served 16 drugs on the day of admission.

We consider combinations of the aforementioned feature cat-
egories: for example B+M, simply denoted as BM, corresponds to 
the use of all basic features and MRCI; whereas BMC also includes 
the features corresponding to clinical quantities of drugs served 
on the first day. In the sequel, we compare the predictive perfor-
mances achieved with increasingly fine-grained models obtained 
with BM, BMP and BMC features for instance.

2.2.3. Classifiers
We conducted extensive tests with different classifiers including 

linear classifiers (LR, LSVM), decision trees and random forests. In 
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Table 1
Feature vector for a sample patient who was served 16 drugs on the day of admission.

Feature 
index

Feature description Feature 
value

Standard charge 
master code

0 Age 15
1 Gender (1 for male, 0 for female) 1
2 MRCI 24

8024 DEXTROSE/NACL SOLUTION 1000ML 1.00 250258000970000
7955 NACL SOLUTION 100ML 2.50 250258000220000
7949 NACL SOLUTION 1000ML 1.00 250258000160000
7084 DOCUSATE NA CAP 100MG 1.00 250257020020000
6654 ACETAMIN TAB 325MG (EA) 2.00 250257000530000
4869 SOD BICARB INJ 8.4% 50MEQ 50ML 1.00 250250058740000
4332 POT CHL VL 20MEQ 10ML 0.50 250250053100000
3566 MORPHINE TAB SR 30MG 0.50 250250044450000
5871 PEG-ES, MIRALAX PWDR 255GM 0.07 250250100890000
3483 MISC TOPICAL 1.00 250250043560000
1563 DIPHENHYD INJ 50MG 1.00 250250019540000
1292 CYCLOBENZAPRINE TAB 10MG 2.00 250250016100000
2882 LANSOPRAZOLE CAP 30MG 1.00 250250036600000

784 CEFEPIME VL 1GM 2.00 250250010280000
3093 LORATADINE TAB 10MG 1.00 250250038770000

134 ALLOPURINOL TAB 100MG 1.00 250250001580000
Fig. 7. Performances of different classifiers for predicting hospital mortality on im-
balanced (real) test sets.

the sequel, we mainly report on our experiments with the LR clas-
sifier to make predictions. The reason is that LR was the classifier 
that yielded the best predictive accuracy among several widely-
used classifiers (see § 3.1 for comparative metrics and Figs. 7 and 8
for comparisons). Notice that LSVM also yields a similar predic-
tive performance. For equivalent performances, we still favor LR 
because its raw output has a probabilistic interpretation. For our 
tests, we use the SparkML distributed implementation [11,10] of 
the LR classifier [12].

Like several other standard machine learning methods, LR can 
be formulated as a convex optimization problem, i.e. the task of 
finding a minimizer of a convex function f that depends on a 
variable vector w which has d entries. More formally this can be 
written as the optimization problem

minw∈Rd f (w)

in which the objective function f is of the form:

f (w) = λR(w) + 1

n

n∑

i=1

L(w; xi, yi)

where the vectors xi ∈ R
d are the training data examples, for 1 ≤

i ≤ n, and yi ∈R are their corresponding labels, which we want to 
predict; and the logistic loss function L is of the form:

L(w; x, y) = log(1 + exp(−yw T x))
The purpose of the regularizer R(w) is to encourage simple 
models and avoid overfitting. The fixed regularization parameter 
λ defines the trade-off between the two goals of minimizing the 
loss (i.e., training error) and minimizing model complexity (i.e., to 
avoid overfitting). Our reported experiments were obtained with 
L2 regularization, i.e. R(w) = 1

2 ||w||22 and λ = 1
2 .

Given a new data point, denoted by x, the LR model makes 
predictions by applying the logistic function:

f (z) = 1

1 + e−z

where z = w T x. We eventually use a threshold t such that if 
f (w T x) > t , the outcome is predicted as positive, or negative oth-
erwise. By default we choose t = 0.5 unless specified otherwise. 
We make t vary to compute ROC curves and report area under 
curves (see Section 3.1). Notice however that the raw output of 
the logistic regression model, f (z), already has a probabilistic in-
terpretation (i.e. the probability that x is positive).

2.2.4. Cross-validation, class imbalance, and normalization
We perform cross-validation: we separate training and testing 

subsets and we use only the training subset to fit the model and 
only the testing subset to evaluate the accuracy of the model. We 
pick the training and testing subsets randomly and in a disjoint 
manner. In practice we used at least 3-fold cross validations and 
up to 10-fold cross-validations.

There are many more patients without complication than pa-
tients experiencing complications during their stays (hopefully). To 
deal with this class imbalance, we applied two different methods 
in order to rebalance classes before the random selection of the 
training subset: downsampling the set of patients with no compli-
cation, and learning with weighted coefficients (so that the impact 
of each instance is proportional to the overall class imbalance). We 
apply feature normalization for the linear models.

3. Results

We provide experimental evidence to back our claims on big 
prescription data. We bring novel insights concerning volume, va-
riety, generality, velocity, scalability, and explainability in the con-
struction of predictive models for complications. For assessing the 
quality of predictive models, we rely on a set of performance met-
rics that we first introduce.
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Fig. 8. Impact of finer-grained features (variety) on ROC AUC for predicting mortal-
ity.

Fig. 9. Impact of finer-grained features (variety) on ROC AUC for predicting PU.

3.1. Performance metrics

For a given complication, our system outputs a Boolean predic-
tion (either positive or negative) for each admission. To evaluate 
prediction results, we use recall, precision and other standard met-
rics computed from confusion matrices [20,21]. In particular, we 
use the area under the ROC curve (ROC AUC) evaluated on the test 
data, which is the standard scientific accuracy indicator [22]. The 
higher AUC indicates the better prediction performance. Intuitively, 
when using normalized units, AUC is equal to the probability that 
a classifier will rank a randomly chosen positive instance higher 
than a randomly chosen negative one [20]. We also use the area 
under the precision-recall curve (PR-AUC) as an additional insight 
(though for any dataset, the ROC curve and PR curve for a given 
algorithm contain the same points [23]). We use precision, recall, 
ROC AUC, and PR-AUC to evaluate the overall predictive perfor-
mance in terms of a large variety of features and a large volume 
of training data.

3.2. Variety

We investigate the impact of considering more or less fine-
grained features when predicting complications. In other terms, we 
examine whether considering more features (variety) per instance 
yields a better predictive accuracy.

We consider the list of basic features (B) for each patient, the 
MRCI score (M), clinical quantities (C), and combinations of them. 
Fig. 8 presents ROC curves and AUC results for mortality prediction. 
Fig. 9 presents ROC curves and AUC results for the prediction of 
pressure ulcers. ROC AUC is greater than 80% with BMC features 
which is significantly greater than with BM features (63%).
Fig. 10. Impact of volume on predictive performance with train and test sets of 
varying size (but with constant 2:1 ratio). Prediction of HAI.

The finer-grained features we consider the better predictive 
performance we obtain; the best predictive performance being ob-
tained with the combination of all features (BMC). In particular, we 
observe that the detailed clinical quantities yield a significant in-
crease in predictive performance compared to basic features and 
MRCI (Fig. 8). We obtain similar gains when predicting other com-
plications. These results confirm that Variety (the number and 
granularity of features) can significantly improve the predictive 
modeling accuracy.

3.3. Volume

We study the impact of data volume on the construction of 
models.

First, we study the impact of increasing the sizes of both the 
train and test subsets. For this purpose, we choose a constant size 
ratio between the train subset and the test subset. We set this 
ratio to 2:1, meaning that we construct models from a train dataset 
whose size is the double of the size of the test subset. We make 
the sizes of both the train and test subsets vary while keeping this 
constant 2:1 ratio between their respective sizes. The results in 
terms of ROC AUC are presented in Fig. 10a. Results in terms of 
recall are shown in Fig. 10b.

Second, we study the impact of a dramatic increase in the num-
ber of training instances on predictive modeling accuracy. For this 
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Fig. 11. Impact of volume on predictive performance with train sets of varying sizes, 
and same test set. Prediction of HAI.

purpose, we randomly pick a test dataset that we keep constant 
while we repeatedly construct models with training datasets of 
varying sizes. We recall that in all our tests there is no overlap 
between the train and test datasets which are always chosen ran-
domly in a disjoint manner.

Figs. 11a, 11b and 12 present results in terms of ROC AUC, Re-
call and PR AUC (respectively) for the same test dataset with train 
datasets of increasing sizes. All models are evaluated on the same 
randomly chosen test subset of around 3010 instances, while we 
increase the train dataset size, as reported on the x-axes of the 
graphs of Figs. 11a, 11b and 12 indicating the size of the train-
ing set (100% corresponding to a train dataset of around 1 267 000 
instances, 75% corresponding to around 950 000 instances in the 
train dataset and 10% corresponding to around 127 000 instances). 
The test subsets are randomly chosen and extracted from the re-
maining part of the full initial dataset (after removal of the test 
dataset).

We observe that increased volume tends to improve predictive 
performance. The availability of prescription data in very large vol-
umes is beneficial for predicting complications.

3.4. Generality in predicting complications

We further investigate our initial postulate that drug prescrip-
tion data on the day of admission contain rich information about 
Fig. 12. PR AUC (train subsets of varying sizes and same test subset), when pre-
dicting hospital–acquired infections. Notice that classes are heavily imbalanced: 
hospital–acquired infections occur for 3% of all admissions. Metrics are reported for 
imbalanced (real) test sets.

the patient’s situation and perspectives of evolution. We study to 
which extent this information is general i.e. whether it can ef-
fectively be extracted for predicting different complications. For 
this purpose, we make our system builds (learns) a specific model 
for each complication and we assess the quality of models. We 
now examine and evaluate the predictions for the different com-
plications that we consider. We performed extensive tests using 
cross-validation methodology (see § 2.2.4), and we report on accu-
racy obtained from randomly chosen training and (disjoint) testing 
sets.

Fig. 13a shows a ROC curve obtained when predicting hospital 
death. We obtain a ROC AUC greater than 76%.

ROC curves and AUC obtained when predicting occurrence of 
pressure ulcers are shown on Fig. 13b. Fig. 13c shows the results 
for ICU admissions, and Fig. 13d the results for hospital–acquired 
infections.

Overall, the system exhibits best accuracy for predicting the 
occurrence of hospital–acquired infections, pressure ulcers, and 
hospital deaths. Table 2 further illustrates detailed metrics on ran-
domly selected datasets, with a threshold t = 0.5.

3.5. Velocity

We report on how fast the models can be generated with re-
spect to the considered dataset size.

Three subtasks are particularly computationally-intensive: (i) 
the data preprocessing including prefiltering, joining and feature 
extraction from data (as explained in § 2.1.1 and 2.2.2), (ii) the 
construction (learning) of models (see § 2.2.3), and (iii) the evalua-
tion of the model over a test dataset. Notice that since we perform 
cross-validation, the two latter steps are often grouped and per-
formed repeatedly. Afterwards, once a model has been computed, 
its execution (for computing predictions) is very efficient. A clus-
ter of machines is then no longer needed: the model can be saved 
and transmitted (e.g. in PMML standard format) to be executed on 
a single commodity machine.

A BM model is computed in approximately 3.5 seconds from a 
training dataset of 800 K instances, validated in 8 seconds on a test 
dataset of 400 K instances, and executed in a negligible amount of 
time (a few ms) on a single instance (to obtain a prediction).

A more sophisticated BMP model (with more then 3000 fea-
tures) is computed in 20 seconds from a training dataset of 800 K
instances, validated in 14 seconds on a test dataset of 400 K, and 
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Fig. 13. Predicting hospital death, pressure ulcers, ICU admissions and hospital–acquired infections with BMC and BMP features (randomly picked datasets).

Table 2
Detailed LR prediction metricsa on random train and test subsets, with notations adopted from Fawcett [20]: TP is the number of true positives, FP: false positives, TN: true 
negatives, FN: false negatives, P = TP + FN and N = FP + TN. Notice that classes are heavily imbalanced since complications typically occur for around 3% of all admissions. 
The presented metrics are computed on imbalanced (real) test subsets.

Metric Death ICU PU HAI Metric definition
True positive rate 65.1% 58.1% 68.4% 65.7% TP/P
True negative rate 75.4% 64.1% 78.0% 80.5% TN/N
False positive rate 24.6% 35.9% 22.0% 19.5% FP/N
False negative rate 34.9% 41.9% 31.6% 34.3% FN/P
Negative predictive value 98.5% 97.3% 98.9% 98.9% TN/(TN + FN)
Positive predictive value 7.9% 6.5% 7.9% 8.1% TP/(TP + FP)
False discovery rate 92.1% 93.5% 92.1% 91.9% FP/(TP + FP)
Accuracy 75.1% 63.9% 77.8% 80.2% (TP + TN)/(P + N)
Error 24.9% 36.1% 22.2% 19.8% (FP + FN)/(P + N)
a True positive rate is also known as hit rate, recall, and sensitivity; true negative rate is also known as specificity; false positive rate as fall-out; false negative rate as miss 

rate; and positive predictive value as precision.
executed in a negligible amount of time (a few ms) on a single 
instance.

A BMC model (with more than 10 000 features) is computed 
in 108 seconds and validated in 29 seconds on datasets of similar 
sizes, and also executed in a negligible amount of time on a single 
instance.

Fig. 14 illustrates the elapsed computation times in terms of the 
dataset size, for the different kind of models (from the simplest BM 
ones to the more complex BMP and BMC ones).

For the aforementioned computations to be possible, an addi-
tional one-time preprocessing stage is necessary to load and filter 
data (15 s for loading and filtering patient data, and 4 minutes for 
loading, filtering and joining with billing data stored in CSV for-
mat). This preprocessing stage is done only once; afterwards and 
we restart from intermediate data that we store in the Parquet for-
mat (which can be loaded in less than 10 s). All these performance 
figures are obtained with the cluster of 5 machines set up to use 
48 GB of RAM per executor and 128 cores.

3.6. Scalability

We report on the extent to which model construction bene-
fits from the availability of greater computational resources in the 
cluster of machines.

We make the computational resources of our cluster vary and 
study running times depending on the amount of memory avail-
able per executor and the total number of cores in the cluster. 
Fig. 15a shows the elapsed times spent for a 3-fold cross validation 
process of a BM model depending on the cluster resources used. 
Each single time shown in Fig. 15a thus corresponds to the total 
running time spent for 3 iterations of the construction and evalu-
ation of a BM model on three randomly chosen datasets. Times are 
reported depending on two varying cluster resources: the amount 
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Fig. 14. Times spent for constructing and testing models depending on dataset sizes.

of RAM per executor and the total number of cores available in the 
cluster. Fig. 15a shows elapsed times when constructing BM mod-
els and Fig. 15a shows elapsed times when constructing the more 
complex BMC models. Fig. 16 illustrates the time variability of a 
single step of the cross-validation process (including time spent in 
splitting, normalizing features, training the model on one dataset, 
and evaluating the model on one dataset).

Figures all illustrate similar variations of computation times. 
Computation times decrease with the number of cores. We observe 
a particularly sharp decrease in computation time when increasing 
the number of cores from 2 to 24. This overall behavior is similar 
independently of the amount of RAM available in each executor. 
We also observe that the computations tend to be faster when 
more memory available in each executor. Overall, results show that 
the construction of simple and complex models greatly benefits 
from the distribution and the availability of more computational 
resources (mainly the number of cores) in the cluster.

3.7. Explainability

We pay particular attention to the explainability of the models 
that we generate. In other terms, we do not only focus on numer-
ical predictive modeling accuracy but also concentrate on gener-
ating models that offer opportunities for further clinical interpre-
tation and understanding. Model explainability helps in building 
clinical knowledge and may guide the search of further mod-
els.

We thus further study the weights of the LR models that we 
generate. The weights of an LR model represent a summarization 
of the respective importance of features over the training dataset. 
As such, it is thus interesting to study how stable is this summa-
rization with respect to different training datasets.

We constructed BMP models to predict hospital–acquired in-
fections for 108 randomly selected train sets, and analysed the 
weights of all models. Specifically, we concentrate on the top 10 
most important positive weights. In other terms, we retain the 
set S of all features f that such that f occurs in the top 10 
most important positive weights in at least one of the 108 mod-
els. Only 12 drugs occur in S . These drugs are shown in Table 3a 
which presents the corresponding features sorted by their number 
of occurrences, and their identifier (not by weight which would 
require aggregation of some sort). We performed a similar anal-
ysis for the top 10 most important negative weights. Only 14 
drugs form the most important negative weights, as shown in Ta-
ble 3b.
Fig. 15. Times spent for the construction of models depending on cluster resources.

Fig. 16. Times spent for a single step of the cross-validation process.

We also constructed BMC models for 102 randomly selected 
train sets. We analysed the weights of all models. This time, since 
these models use many more features, we pay attention to the 
topmost 20 positive and negative weights. Results are shown in 
Table 4 and 5, respectively.
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Table 3
The most important features in BMP models and the number of times they occur in the top 10 list of the most important weights, out of 108 randomly 
selected train sets.

Most important positive features Count
25025001018_CEFAZOLIN 108
25025002863_GENTAMICIN 108
25025004905_OXYCOD/ASA 108
25025005262_PIPERACILLIN/TAZO 108
25025006583_VANCOMYCIN 108
25025700053_ACETAMINOPHEN 108
25025800083_DEXTROSE SOLUTION 108
25025001030_CEFEPIME 90
25025800016_NACL 83
25025003050_HEPARIN NA FLUSH 72
25025000337_AMPICILLIN/SULBAC 43
25025003226_HYDROMORPHONE 36

Most important positive features Count
25025000520_AZITHROMYCIN 108
25025002815_FUROSEMIDE 108
25025003499_IPRATROPIUM 108
25025004224_METHYLPRED NA 108
25025004756_NITROGLYCERIN 108
25025004929_OXYTOCIN 108
25025700431_ASPIRIN 108
25025706196_VIT B1 (THIAMINE) 108
25025000135_ALBUTEROL 106
25025001926_DINOPROSTONE 60
25025001966_DIPHTHERIA/TETANUS 33
25025704695_NICOTINE 14
25025003675_LEVALBUTEROL 2
25025003884_LORAZEPAM 1

(a) Positive features (b) Negative features
Table 4
The most important positive features in BMC models and the number of times they 
occur in the top 10 list of the most important positive weights, out of 102 randomly 
selected train sets.

Most important positive features Count
250250065940000_VANCOMYCIN VL 500MG 102
250250065800000_VANCOMYCIN VL 500MG 102
250258001390000_DEXTROSE SOLUTION 100ML 102
250258000220000_NACL SOLUTION 100ML 102
250257000530000_ACETAMIN TAB 325MG (EA) 102
250250065950000_VANCOMYCIN VL 500MG 102
250250008220000_CA ACET TAB 667MG 102
250250065840000_VANCOMYCIN VL 500MG 102
mrci 102
250250052870000_PIPERACILLIN/TAZO VL 2/0.25GM 102
250250052630000_PIPERACILLIN/TAZO VL 2/0.25GM 102
250250049010000_OXYCOD/ASA TAB 4.5MG/325MG 102
250250028630000_GENTAMICIN VL 40MG/ML 2ML 102
250250010180000_CEFAZOLIN VL 1GM 102
250250010130000_CEFAZOLIN VL 1GM 102
adm_type_2 101
250250003370000_AMP/SULBAC VL 3GM 94
250250100930000_SEVELAMER, RENAGEL CAP 403MG 87
250258000190000_NACL SOLUTION 100ML 78
250258001450000_DEXTROSE SOLUTION 100ML 69
250258000270000_NACL SOLUTION 100ML 50
250250010300000_CEFEPIME VL 1GM 20
250257000510000_ACETAMIN SUPP 325MG 11

We make the following observations:

• only the features indicated in the aforementioned tables form 
the most important weights of all models (there is no feature 
left with respect to the definition above);

• the majority of features retained this way appear in the most 
important weights of all models;

• the same observations hold for the BMP and for the BMC mod-
els.

This illustrates the stability of weights and the robustness of the 
generated models with respect to the randomly selected train sets, 
opening the way for further clinical interpretation (beyond the 
scope of this article).

4. Related works

A general overview of recent developments in big data in the 
context of biomedical and health informatics can be found in Pérez 
et al. [24]. With the broad adoption of EHRs systems, the develop-
ment of techniques for improving the quality of clinical care has 
received considerable interest recently, especially from the AI com-
munity [25–29].
Table 5
The most important negative features in BMC models and the number of times they 
occur in the top 10 list of the most important negative weights, out of 102 ran-
domly selected train sets.

Most important negative features Count
250250001200000_ALBUTEROL INH SOL 0.5% 1ML (5MG) 102
250250028190000_FUROSEMIDE VL 40MG 4ML 102
250257004340000_ASPIRIN TAB 325MG (EA) 102
250250105290000_OXYTOCIN VL 10U/ML 1ML 102
250250049270000_OXYTOCIN VL 10U/ML 1ML 102
250250047520000_NITROGLYCERIN OINT 2% 1GM 102
250250042270000_METHYLPRED NA VL 125MG 102
250250035010000_IPRATROPIUM INH SOL 0.02% 2.5ML 102
250250042240000_METHYLPRED NA VL 125MG 102
250250005200000_AZITHROMYCIN TAB 250MG 102
250250005110000_AZITHROMYCIN VL 500MG 102
250250019660000_DIPHTHERIA/TETANUS ADLT INJ 0.5ML 102
250250019260000_DINOPROSTONE VAG SUPP 10MG 102
250257004310000_ASPIRIN TAB 325MG (EA) 101
250257046890000_NICOTINE PATCH 21MG/DAY 99
250250036760000_LEVALBUTEROL, XOPENEX INH SOL 

0.63MG/3ML 3ML
93

250250029250000_GUAIFEN SYRP 100MG/5ML 5ML 64
250250100600000_IPRATROPIUM/ALBUTEROL INH SOL 3ML 64
250250049290000_OXYTOCIN VL 10U/ML 1ML 63
250250052970000_PANTOPRAZOLE, PROTONIX I.V. VL 40MG 57
250257061960000_VIT B1 (THIAMINE) TAB 100MG 53
age 50
250250001210000_ALBUTEROL INH SOL 0.5% 1ML (5MG) 34
250250043570000_MISOPROSTOL TAB 200MCG 14
250250028170000_FUROSEMIDE VL 40MG 4ML 13
250250028180000_FUROSEMIDE VL 40MG 4ML 5
250250021370000_ENOXAPARIN INJ 30MG 0.3ML 4

The work of Luo et al. [28] addresses ICU mortality risk predic-
tion with unsupervised feature learning techniques from timeseries 
of physiologic measurements (whereas we consider supervised 
techniques on prescribed drug data at admission). Lee et al. [25]
introduce a method for the purpose of extracting phenotype in-
formation from EHRs and for providing analyses on phenotypes. 
Kuang et al. [26] propose a baseline regularization model for the 
task of finding new indications for existing drugs leveraging het-
erogeneous drug-related data based on EHRs. Li et al. [27] explore 
joint models for extracting mentions of drugs and their side ef-
fects, such as diseases that they cause. Zhang et al. [29] explore 
survival prediction with a focus on intermittently varying data.

Closely related works in terms of research objectives are the 
independent works performed simultaneously found in Avati et al. 
[30], Rajkomar et al. [31]. Authors develop a model for predicting 
all-cause mortality of patients from EHR data. The research objec-
tives pursued are similar, and the methodology and the data used 
exhibit some similarities but with several important differences. 
First, [30] and [31] require “longitudinal” data in the sense that for 
making a prediction, their systems require historical data for the 
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patient: it relies on historical observation windows and several ob-
servation slices: [30] uses 4 observation slices and [31] uses data 
from 24 hours before hospital admission (and also after admis-
sion). Both systems require the knowledge of the patient situation 
at several moments in time. In sharp contrast, our predictive sys-
tem only requires the list of drugs prescribed on the very first day 
of arrival at the hospital for making a prediction. Our prediction 
system is thus much more flexible and general, since it can be used 
with patients admitted for the first time with no known history. 
Second, [30] and [31] use deep neural network models whereas 
the current article presents results obtained with more classical 
models that: (i) perform faster on CPU machines, and (ii) are more 
intelligible: they offer more insights into the factors that influence 
the predictions, as emphasized in [32]. For instance, the weights 
computed by our models are stable and intelligible, allowing fur-
ther interpretation (and fix if needed) by clinicians. Last but not 
least, to be able to operate without the need for historical data of 
patients, our models were trained with much more “transversal” 
data. [30] studies a population of 221 284 patients (216 221 hos-
pitalizations were studied in [31]), whereas our models are built 
from the automated analysis of more than 1.2 million of patients.

In fact, our work fundamentally differs from all these previous 
works by the initial assumed postulate from which we start. We 
formulate the hypothesis that the information required for identi-
fying at-risk profiles is available in the initial patients’ drug pre-
scription data at the time of hospital admission. In other terms, 
our system exclusively relies on analysing prescribed drug data 
of the day of admission. Previous studies that seeked to exploit 
EHR information with a similar postulate have mainly been de-
veloping score-based techniques. For instance the works found in 
[33–35,5] also assume that the complexity of the patient’s medica-
tion regimen is a good indicator of the complexity of the patient’s 
condition. The existence of correlations between MRCI at admis-
sion and occurrence of complications is empirically demonstrated 
in the work of Lepelley et al. [5]. Compared to these works, we 
go further by (1) exploring how this information can be leveraged 
for predictive purposes (on large datasets) and (2) by considering 
finer-grained features, thanks to the distributed architecture, which 
allows to improve prediction accuracy. A simple score such as MRCI 
constitutes a rough approximation. For example, the same MRCI 
value may denote different situations with radically different evo-
lution perspectives. Our fine-grained approach is more adapted to 
capture these differences. We showed that this leads to increased 
prediction accuracy.

Last but not least, we provide experimental evidence to validate 
our claim that big data perspectives such as volume and variety 
effectively help in extracting relevant information useful in a novel 
and concrete healthcare application for predicting complications.

5. Conclusion

We propose a novel method for identifying patients at risk of 
complications during their hospital stay, which is based exclusively 
on drug prescription data of the day of admission, for the purpose 
of developing adapted prevention. We illustrate how the volume 
and variety perspectives of big medical data improve the automatic 
identification of at-risk patients. Experimental results suggest that 
such systems might be especially useful for detecting patient pro-
files at risk of hospital–acquired infections, pressure ulcers and 
death. This opens the door to promising research on the con-
struction of further models. An advantage of our initial prototype 
system that of being adapted for deployment in hospitals as it is 
implementable in-house with modest hardware. It does not require 
neither external storage of sensitive medical data (thus avoiding 
additional issues of confidential data leakage), nor very expensive 
hardware (thanks to the distribution of data and computations).
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