Course: Introduction to Streaming Validation

Pierre Geneveés
CNRS

(slides mostly based on Marc H. Scholl's ones)

University Grenoble Alpes

1/21

Validating XML Documents Against DTDs

@ To validate against this DTD . ..

L N S

o«

DTD featuring regular expression (RE) content models
<IDOCTYPE a [
<!ELEMENT a (b, c*, a?)>
<IELEMENT b (#PCDATA) >
<!ELEMENT ¢ (d, d+) >
<IELEMENT d (#PCDATA) >
1>

... means to check that the sequence of child nodes for each
element matches its RE content model:

Text Text Text Text Text Text

The techniques necessary for this checking are well-known from

compiler-construction. We review them via an example in the sequel.

2 /21

@ When, during RE matching, we encounter a child element t, we need
to recursively check t’s content model cm(t) in the same fashion:

b

TLJ'___) _I__Z_l— . _r_ :X/_:T:\&__ ______ [[:

[Text, (Text), |Text, [Text, |Text, |Text|

3 /21

@ When, during RE matching, we encounter a child element t, we need
to recursively check t’s content model cm(t) in the same fashion:

cm(d

1 R O
LTéxt} [d/: :_d_'

r iy gy
Llext; [Text,

cm(a)

cm(b)

cm(c)

(d)

A~ 4 4
= 1 o f_‘
Llext, | Text; | Text,

= Db,c*a?

= #PCDATA

= dd"

= #PCDATA

3 /21

@ When, during RE matching, we encounter a child element t, we need
to recursively check t’s content model cm(t) in the same fashion:

Text, 4 _§ a4 _i: - :j] b
MText! "Text! "Text! "Text! [Text! [Text!
Lrexty plext, o rext, o iext, o rexty o rext
cm(a) = Db,c*a?
cm(b) = #PCDATA
cm(c) = ddt
cm(d) = #PCDATA

S SAX and DTD validation?
@ Can we use SAX to drive this validation (= RE matching) process?

@ |If so, which SAX events do we need to catch to implement this?

3 /21

Regular Expressions

@ To provide adequate support for SAX-based XML validation, we
assume REs of the following structure:

RE = 0 matches nothing
| € matches empty sequence of SAX events
| #PCDATA matches characters(-)
| t matches startElement(t, -)
| RE,RE concatenation
| RE* one-or-more repetitions
| RE* zero-or-more repetitions
| RE? option
| RE|RE alternative
| (RE)

) g% (¢ and € are not the same thing.
o In the startElement(t,-) callback we can process <!ATTLIST t ...>

declarations (not discussed here)

a/21

@ Associated with each RE is the regular language L(RE) (here: sets

of sequences of SAX events) this RE accepts:

L(0) =
L(e) -
L(#PCDATA) =
L(t) =
L(RE1, RE)) =
L(RE™") =

L(RE*) =

L(RE?) =
L(RE1 | RE;) =

0

{e}

{characters(-)}
{startElement(t,-)}'®

{s152| 51 € L(RE1), s2 € L(RE2)}
U L(REY)

i=1
U L(RE')
i=0

{e}UL(RE)
L(RE1) U L(RE>)

o N.B.:. RE®=¢ and RE' = RE,RE-1.

¥To save trees, we will abbreviate this as {t} from now on.

5 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?

L(#PCDATA | b*)

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?
L (#:PCDATA | b*)

= L(#PCDATA) U L(b*)

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?

L(#PCDATA | b*)

L (#PCDATA) U L(b*)

L(#PCDATA) U U, L(b)

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?

L(#PCDATA | b*)

L (#PCDATA) U L(b*)

L(#PCDATA) U U, L(b)

L(#PCDATA) U L(b%) U JZ, L(b)

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?
L (#PCDATA | b*)
= L(#PCDATA) U L(b*)
= L(#PCDATA) U U, L(b')
= L(#PCDATA) U L(v°) U (U2, L(b")

= L(#PCDATA) U L(¥°) U L(b") U U, L(b")

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?
L (#PCDATA | b*)
= L(#PCDATA) U L(b*)
= L(#PCDATA) U U, L(b')
= L(#PCDATA) U L(v°) U (U2, L(b")
= L(#PCDATA) U L(¥°) U L(b") U U, L(b")
= L(#PCDATA) U L(¥°) U L(b") U L(b?) U U2, L(b")

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?
L(#PCDATA | b*)
= L(#PCDATA) U L(b*)
= L(#PCDATA) U U, L(b')
= L(#PCDATA) U L(v°) U (U2, L(b")
= L(#PCDATA) U L(x°) U L(b") U U=, L(b")
= L(#PCDATA) U L(¥°) U L(b") U L(b?) U U, L(b")
= L(#PCDATA) U L(g) U L(b) U L(b, b)) U ...

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?
L(#PCDATA | b*)

= L(#PCDATA) U L(b*)

= L(#PCDATA) U U, L(b")

= L(#PCDATA) U L(b°) U U, L(b")

= L(#PCDATA) U L(b°) U L(b") U U2, L(b)

= L(#PCDATA) U L(°) U L(b") U L(b%) U U2, L(D")

= L(#PCDATA) U L(g) U L(b) U L(b,b*) U ...

= L(#PCDATA) U L(g) U L(b) U {s152 | 1 € L(b), 2 € L(BY)} U ...

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?
L (#PCDATA | b*)
= L(#PCDATA) U L(b*)
= L(#PCDATA) U U, L(b')
= L(#PCDATA) U L(v°) U (U2, L(b")
= L(#PCDATA) U L(x°) U L(b") U U, L(b")
= L(#PCDATA) U L(¥°) U L(b") U L(b%) U U2, L(b")
= L(#PCDATA) U L(g) U L(b) U L(b,b") U ...
= L(#PCDATA) U L(e) U L(b) U {s152 | s1 € L(b).s2 € L(®B)} U ...

= {characters(-),e,b,bb, ...}

6 /21

Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?
L (#PCDATA | b*)
= L(#PCDATA) U L(b*)
= L(#PCDATA) U U, L(b')
= L(#PCDATA) U L(v°) U (U2, L(b")
= L(#PCDATA) U L(x°) U L(b") U U, L(b")
= L(#PCDATA) U L(¥°) U L(b") U L(b*) U U, L(b")
= L(#PCDATA) U L(g) U L(b) U L(b, b)) U ...
= L(#PCDATA) U L(e) U L(b) U {s152 | s1 € L(b).s2 € L(®))} U ...

= {characters(-),e,b,bb,... }

6 /21

Evaluating Regular Expressions (Matching)

@ Now that we are this far, we know that matching a sequence of SAX
events s against the content model of element t means to carry out
the test

s & L(em(t)) .

- /21

Evaluating Regular Expressions (Matching)

@ Now that we are this far, we know that matching a sequence of SAX
events s against the content model of element t means to carry out
the test .

s € L(ecm(t)) .

o L(cm(t)), however, might be infinite or otherwise too costly to
construct inside our DTD validator.

- /21

Evaluating Regular Expressions (Matching)

@ Now that we are this far, we know that matching a sequence of SAX
events s against the content model of element t means to carry out
the test X

s € L(ecm(t)) .

o L(cm(t)), however, might be infinite or otherwise too costly to

construct inside our DTD validator.

@ We thus follow a different path that avoids to enumerate L(cm(t))
at all.

- /21

Evaluating Regular Expressions (Matching)

Now that we are this far, we know that matching a sequence of SAX
events s against the content model of element t means to carry out
the test

?
s€ L(cm(t)) .
L(cm(t)), however, might be infinite or otherwise too costly to
construct inside our DTD validator.

We thus follow a different path that avoids to enumerate L(cm(t))
at all.

Instead, we will use the derivative s\RE of RE with respect to
input event s:

L(s\RE) = {s'|ss' €L(RE)}

“s\RE matches everything matched by RE, with head s cut off.”

- /21

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;s»s3 against RE:

51583 € L(RE)

8/21

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;s»s3 against RE:

s1s053 € L(RE) & sisasse € L(RE)

8/21

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;s»s3 against RE:

s1so53 € L(RE) & sisasse € L(RE)
& 5538 € L(5\RE)

8/21

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;s»s3 against RE:

s1sos3 € L(RE) & sysasse € L(RE)
& 5538 € L(51\RE)
& sz € L(s\(s1\RE))

8/21

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;s»s3 against RE:

s15053 € L(RE) s15253€ € L(RE)
sys3€ € L(s1\RE)
s3¢ € L (s5\(s1\RE))

e € L(s3\(s2\(s1\RE))) -

t ¢ QO

8/21

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;s»s3 against RE:

s15053 € L(RE) s15053€ € L(RE)
sys3€ € L(51\RE)
s3e € L (s5\(s1\RE))

e € L (s3\(s2\(s1\RE))) -

t ¢ QO

@ We thus have solved our matching problem if

@ we can efficiently test for e-containment for a given RE,
and

8/21

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;S»s3 against RE:

s15053 € L(RE) s15053€ € L(RE)
sos3€ € L(s1\RE)
sz € L (s5\(s1\RE))

e € L (s3\(s2\(s1\RE)))

IR

@ We thus have solved our matching problem if
@ we can efficiently test for e-containment for a given RE,
and

@ we are able to compute L (s\RE) for any given input event s and any
RE.

8/21

& Ad @): Testing for €'s presence in a regular language.

Define a predicate (boolean function) nullable(RE) such that

nullable(RE) < €€ L(RE) .

false

nullable()

nullable(e)

nullable(#PCDATA)
nullable(t) =
nullable(RE,, RE;) =
nullable(RE™) =
nullable(RE*) =
nullable(RE?) =
nullable(RE; | RE;) =

true

false

9/21

Example

Does L(#PCDATA | b*) contain the empty SAX event sequence €7

nullable(#PCDATA | b*)

10/ 21

Example

Does L(#PCDATA | b*) contain the empty SAX event sequence €7

nullable(#PCDATA | b*) = nullable(#PCDATA) V nullable(b*)

10/ 21

Example

Does L(#PCDATA | b*) contain the empty SAX event sequence €7

nullable(#PCDATA | b*) nullable(#PCDATA) V nullable(b*)

false v true

10/ 21

Example

Does L(#PCDATA | b*) contain the empty SAX event sequence €7

nullable(#PCDATA | b*) nullable(#PCDATA) V nullable(b*)
= falseV true

= true .

10/ 21

Example

Does L(#PCDATA | b*) contain the empty SAX event sequence €7

nullable(#PCDATA | b*) nullable(#PCDATA) V nullable(b*)
= falseV true

= true .

& nullable(Prof?,Dr, (rernat | emer | phil)"t) = 7

10/ 21

Ad @: Note that the derivative s\ is an operator on REs (to REs). We define
it like follows and justify this definition on the next slides.

s\0
s\e

s\ #PCDATA

s\t

5\(RE1, REQ)

S\RE™
S\RE"
S\RE?
S\(RE1 | RE»)

if s = characters(-)
otherwise

€ if s = startElement(t,-) //% recursively match cm(t)

Il
—_———— S
= M

0 otherwise
B ((s\RE1), RE2) | (s\RE2) if nullable(RE1)
- {(s\REl), RE, otherwise
— (s\RE), RE"
(s\RE), RE*
= s\RE
= (s\RE1) | (s\REz)

11 /21

Correctness: Case Analysis (I)

To assess the correctness of this derivative construction s\RE = RE' we
can systematically check all 9 cases for language equivalence, i.e.

L(s\RE) = L(RE") .
@ RE =0:
L(s\D) = {s'|ss'eL(0)}
= {s'|ss'ch}
0

= L(0).

12 /21

Correctness: Case Analysis (II)

Q RE=c¢:
L(s\e) = {s'|ss'elL(e)}
= {s'|ss’ € {e}}
0
= L(D).
© RE = #PCDATA, s = characters(-):
L(characters(-)\#PCDATA) = {s’| characters(-)s’ € L(#PCDATA)}

= {s'| characters(-) s’ € {characters(-)}}

= {e}
= L(e).

13 /21

Correctness: Case Analysis (II1)

RE = #PCDATA, s # characters(-):

L(s\#PCDATA) {s'| ss' € L(#PCDATA)}
= {s'|ss’ € {characters(-)}}
= 0

L(0).

© RE =t. Analogous to (3).
© RE = RE, RE,, nullable(RE,) = false:

L(s\(RE,,RE3)) = {s'|ss' € L(RE,, RE;)}
{s'| &' € L((s\RE1), RE2)}
L((s\RE;), RE>).

14 / 21

Correctness: Case Analysis (1V)

RE = RE;, RE,, nullable(RE) = true:

L(s\(RE1, RE2))

{s'|ss’ € L(RE;,RE»)}

{s'|ss’" € L(RE;) V ss' € L(RE;, RE,)}

{s"| s" € L(s\RE>) V s’ € L((s\RE}), RE2)}
{s'|s" € L(s\RE2)} U {s' | s € L((s\RE1), RE2)}
L(s\REz) U L((s\RE1), RE)

L((s\RE2) | ((s\RE1), RE2)) .

15 / 21

Correctness: Case Analysis (V)

Q RE = RE, | RE>:

L(s\(RE: | RE2))

{s'|ss'" € L(RE, | RE,)}

{s'|ss'" € L(REy) UL(RE»)}

{s'|ss" € L(RE1)} U {s'|ss’' € L(RE»)}
{s'|s' € L(s\RE1)} U {s' | s’ € L(s\RE2)}
L(s\RE1) U L(s\RE>)

L((s\RE1) | (s\RE2)).

16 / 21

Correctness: Case Analysis (VI)

@ RE = RE*, nullable(RE) = false:

L(s\RE*) = L(s\(e]|(RE,RE*)))
L(s\e) U L(s\(RE, RE"))
= L(s\(RE,RE™))
L((s\RE), RE*).
RE = RE*, nullable(RE) = true:

L(S\RE*) = L(s\(e | (RE, RE¥)))
= L((s\e) | (s\(RE,RE")))

L@ (s\(RE.RE")))

L(s\(RE, RE*))

L((s\RE™) | ((s\RE), RE™))

L(S\RE*) U L((s\RE), RE*)
L((s\RE), RE®).

17 /21

Correctness: Case Analysis (VII)

Q@ RE = RE™. Follows from RET = RE | RE, RE*.
@ RE = RE?. Follows from RE? =¢ | RE.

18 / 21

& Matching SAX events against an RE
Assume the RE content model b,c*,a? is to be matched against the SAX
events bcca.?
To validate,
@ construct the corresponding derivative RE’ = a\ (c \ (c \ (b \(b,c*,a?)))),
@ then test nullable(RE’).

Hint: To simplify phase (I), use the following laws, valid for REs in general:

e* € e, RE RE
0* = ¢ 0RE = 0
et = ¢ RE,e = RE
ot = 0 RE,0 = 0
e? = ¢ 0|RE = RE
07 € RE|D = RE

¥ Actual event sequence:
startElement(b,-), startElement(c,-), startElement(c,-), startElement(a,-).

19 / 21

Plugging It All Together

The following SAX callbacks use the aforementioned RE matching techniques to
(partially) implement DTD validation while parsing the input XML document:

The input DTD (declaring the content models cm(+)) is

<IDOCTYPE r [... I>

20/21

Plugging It All Together

The following SAX callbacks use the aforementioned RE matching techniques to
(partially) implement DTD validation while parsing the input XML document:

The input DTD (declaring the content models cm(+)) is

<IDOCTYPE r [... 1>
startDocument() startElement(t, -) il
P RE « t\RE; if nullable(RE) then
EmpL U S.push(RE); | RE « S.pop();
RE + cm(r); R-E P Cm(t')_ else
return; ! | % FAIL %;
return;)

characters(-) reLurn;

RE« endDocurment()

#PCDATA\RE; * OK %:

return;

20/21

Plugging It All Together

The following SAX callbacks use the aforementioned RE matching techniques to
(partially) implement DTD validation while parsing the input XML document:

The input DTD (declaring the content models cm(+)) is

<IDOCTYPE r [... 1>
startDocument() startElement(t, -) Su et
P RE « t\RE; if nullable(RE) then
S-empty (); S.push(RE); | RE « S.pop();
RE + cm(r); R-E P Cm(t')_ else
return; ’ | % FAIL %;
return;)

characters(-) reLurn;

RE« endDocurment()

#PCDATA\RE; % OK %:

return;

N.B. Stack S is used to suspend [resume] the RE matching for a specific
element node whenever SAX descends [ascends] the XML document tree.

20/21

Streaming Validation Beyond DTD

Question for next time: what about streaming validation w.r.t
XML Schema?

21 /21

