
Course: XML Essentials

Pierre Genevès
CNRS

University Grenoble Alpes

1 / 63

Programming Languages

1954 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2023

1986 1990 1990 1991 1991 1993 1994 1995 1996 1996 1997 1997 2000 2001 2001 2003 2003 2004

History of Programming Languages

©2004 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc. All other trademarks are property of their respective owners. part#30417

19601954 1965 1970 1975 1980 1985 1990 1995 2000 20022001 2003 2004

For more than half of the fifty years computer programmers have been
writing code, O’Reilly has provided developers with comprehensive,
in-depth technical information. We’ve kept pace with rapidly changing
technologies as new languages have emerged, developed, and
matured. Whether you want to learn something new or need
answers to tough technical questions, you’ll find what you need
in O’Reilly books and on the O’Reilly Network.

This timeline includes fifty of the more than 2500 documented
programming languages. It is based on an original diagram created
by Éric Lévénez (www.levenez.com), augmented with suggestions
from O’Reilly authors, friends, and conference attendees.

For information and discussion on this poster,
go to www.oreilly.com/go/languageposter.

www.oreilly.com

FORTRAN (1954)

LISP (1958)

Objective CAML (1996)

C # (ISO) (2003)
Scala (2003)

Even more “DSLs”, e.g. SPARQL (2008), Julia (2009), XQuery (2010)
Frequent renewal, rapid evolution

2 / 63

Data

• Often, data are more important than programs

3 / 63

Data

• Often, data are more important than programs

• One reason for this is that data often have a much longer life cycle
than programs

• Examples: banking, aeronautical technical documentation, etc.

3 / 63

Example: Aeronautical Technical Documentation

In aeronautics, it is common to find products with life cycles that last for
several decades, e.g. the B-52:

1945

decades

1952 1975

Microsoft

1989 2018 2023

4 / 63

→ How to ensure long-term
access to data?

→ How to design systems such
that manipulated data can still
be read 15 or 50 years later?

5 / 63

→ How to ensure long-term
access to data?

→ How to design systems such
that manipulated data can still
be read 15 or 50 years later?

→ An old concern...

La pierre de Rosette (The Rosetta Stone).

5 / 63

→ How to ensure long-term
access to data?

→ How to design systems such
that manipulated data can still
be read 15 or 50 years later?

→ An old concern...
• Can we really do better with

computers?

La pierre de Rosette (The Rosetta Stone).

5 / 63

→ How to ensure long-term
access to data?

→ How to design systems such
that manipulated data can still
be read 15 or 50 years later?

→ An old concern...
• Can we really do better with

computers?

→ A computer museum? ,

La pierre de Rosette (The Rosetta Stone).

5 / 63

What has not changed for 50 years in information
representation?

6 / 63

What has not changed for 50 years in information
representation?

1963

ASCII

now

6 / 63

The Data Exchange Problem

• Often, data must be sent to a third-party program/person
• Data must be made explicit (e.g. storage in files)
• Naïve1 approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

1But used to be very widespread...
7 / 63

The Data Exchange Problem

• Often, data must be sent to a third-party program/person
• Data must be made explicit (e.g. storage in files)
• Naïve1 approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

MachinCompany
File format X
Parser PX

1But used to be very widespread...
7 / 63

The Data Exchange Problem

• Often, data must be sent to a third-party program/person
• Data must be made explicit (e.g. storage in files)
• Naïve1 approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

MachinCompany
File format X
Parser PX

Bidule Inc.
File format Y
Parser PY

1But used to be very widespread...
7 / 63

The Data Exchange Problem

• Often, data must be sent to a third-party program/person
• Data must be made explicit (e.g. storage in files)
• Naïve1 approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

MachinCompany
File format X
Parser PX

Bidule Inc.
File format Y
Parser PY

TrucMuche SA
File format Z
Parser PZ

...

1But used to be very widespread...
7 / 63

The Data Exchange Problem

• Often, data must be sent to a third-party program/person
• Data must be made explicit (e.g. storage in files)
• Naïve1 approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

MachinCompany
File format X
Parser PX

Bidule Inc.
File format Y
Parser PY

TrucMuche SA
File format Z
Parser PZ

...

??

?

?!

• Problems: - exchanging data → exchanging programs!

- this approach cannot scale (and costs $$$$)

→ Need for normalization of data exchange

1But used to be very widespread...
7 / 63

Motivation for XML:

To have one language to describe and exchange data

8 / 63

XML = Data

Pierre Genevès
CNRS
pierre.geneves@inria.fr

...

Nabil Layaïda
INRIA
nabil.layaida@inria.fr

Text file

9 / 63

XML = Data + Structure

Pierre Genevès
CNRS
pierre.geneves@inria.fr

...

Nabil Layaïda
INRIA
nabil.layaida@inria.fr

Text file

“Mark it up!”

<people>
<person>
<name>Pierre Genevès</name>
<affil>CNRS</affil>
<email>pierre.geneves@inria.fr</email>

</person>
...
<person>
<name>Nabil Layaïda</name>
<affil>INRIA</affil>
<email>nabil.layaida@inria.fr</email>
</person>

</people>

XML Document

9 / 63

XML = Data + Structure

Pierre Genevès
CNRS
pierre.geneves@inria.fr

...

Nabil Layaïda
INRIA
nabil.layaida@inria.fr

Text file

“Mark it up!”

<people>
<person>
<name>Pierre Genevès</name>
<affil>CNRS</affil>
<email>pierre.geneves@inria.fr</email>

</person>
...
<person>
<name>Nabil Layaïda</name>
<affil>INRIA</affil>
<email>nabil.layaida@inria.fr</email>
</person>

</people>

XML Document

Tags describe structure, independently from processors (tags
are not implicit parameters for a given processor, e.g. tags
are not intended for describing presentation)

9 / 63

XML = Data + Structure

Pierre Genevès
CNRS
pierre.geneves@inria.fr

...

Nabil Layaïda
INRIA
nabil.layaida@inria.fr

Text file

“Mark it up!”

<people>
<person>
<name>Pierre Genevès</name>
<affil>CNRS</affil>
<email>pierre.geneves@inria.fr</email>

</person>
...
<person>
<name>Nabil Layaïda</name>
<affil>INRIA</affil>
<email>nabil.layaida@inria.fr</email>
</person>

</people>

XML Document

Is this a good template? What about first/last name?
Several affil’s? email’s...?

9 / 63

XML Documents

• Ordinary text files (UTF8, UTF16, ...)
• Originates from typesetting/DocProcessing community
• Idea of labeled brackets (“mark up”) for structure is not new (already used

by Chomsky in the 1960’s)
• Properly nested brackets/tags describe a tree structure
• Allows applications from different vendors to exchange data
• Standardized, extremely widely accepted
• A Lingua franca for structured data exchange...

10 / 63

Standards for Data Exchange

1963

ASCII

1998

XML

• Before: file format tied to a processor (due to
processor-specific instructions)

• After: markup language for describing (structured)
data in itself (independently from processors)

now

11 / 63

XML History

Ancestors
1974 SGML (Charles Goldfarb at IBM Research)

1989 HTML (Tim Berners-Lee at CERN, Geneva)

1994 Berners-Lee founds World Wide Web Consortium (W3C)

1996 XML (W3C draft, v1.0 in 1998)
http://www.w3.org/TR/REC-xml/

12 / 63

Initial W3C Goals for XML2

“The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness is of minimal importance.”

2http://www.w3.org/TR/WD-xml-961114
13 / 63

http://www.w3.org/TR/WD-xml-961114

XML is a Data Exchange Format

• Contra.. extremely verbose, lots of repetitive markup, large files

• Pro.. answers ambitious goals:

→ long-standing (mark-up does not depend on the system where it was
created nor on processings)

→ One of the pillars of the web

→ We have A STANDARD!

→ If you use XML properly, you will never need to write a parser again

14 / 63

XML is a Meta-Language

• XML makes it possible to create Markup-Languages
• Instead of writing a parser, you simply fix your own “XML Dialect”

by describing all “admissible structures” :
• allowed element names
• how they can be assembled together
• maybe even the specific data types that may appear inside

You do this using an XML Type definition language such as DTD3, XML
Schema (W3C), or Relax NG (Oasis).

Of course, such type definition languages are simple, because you want
the parsers to be efficient!

3Part of the XML Recommendation: http://www.w3.org/TR/REC-xml/16
15 / 63

XML Document Type Definition

• The XML Recommendation4 includes an XML type definition language for
specifying document types: DTD

people → (colleague | friend)*
colleague → name, affil+, email
friend → name, affil*, phone*, email?
...
Document Type

people

colleague ... friend ...

name affil email name

• Each element is associated with its content model: a reg. expr. (, | ? * +)
• A document type (a set of such associations + a particular root element)

describes a set of valid documents used by an organisation

4http://www.w3.org/TR/REC-xml/
16 / 63

XML: What Else?

→ Attributes

→ Comments

→ Processing Instructions

→ Entity References

→ Namespaces

→ Text (a specific node kind)

17 / 63

XML: What Else?

→ Attributes

→ Comments

→ Processing Instructions

→ Entity References

→ Namespaces

→ Text (a specific node kind)

<article class="story" id="news7" datetime="2017-08-08">..</article>

17 / 63

XML: What Else?

→ Attributes

→ Comments

→ Processing Instructions

→ Entity References

→ Namespaces

→ Text (a specific node kind)

<article class="story" id="news7" datetime="2017-08-08">..</article>

<!-- a comment here -->

17 / 63

XML: What Else?

→ Attributes

→ Comments

→ Processing Instructions

→ Entity References

→ Namespaces

→ Text (a specific node kind)

<article class="story" id="news7" datetime="2017-08-08">..</article>

<!-- a comment here -->

<?php sql("SELECT * FROM .") ... ?)>

17 / 63

XML: What Else?

→ Attributes

→ Comments

→ Processing Instructions

→ Entity References

→ Namespaces

→ Text (a specific node kind)

<article class="story" id="news7" datetime="2017-08-08">..</article>

<!-- a comment here -->

<?php sql("SELECT * FROM .") ... ?)>

DTD: <!ENTITY notice "All rights...">
instance: <p> Copyright: ¬ice; </p>

17 / 63

XML: What Else?

→ Attributes

→ Comments

→ Processing Instructions

→ Entity References

→ Namespaces

→ Text (a specific node kind)

<article class="story" id="news7" datetime="2017-08-08">..</article>

<!-- a comment here -->

<?php sql("SELECT * FROM .") ... ?)>

DTD: <!ENTITY notice "All rights...">
instance: <p> Copyright: ¬ice; </p>

<book xmlns="http://www.books.com/xml"
xmlns:cars="http://www.cars.com/xml">

<part><cars:part>Avoids collisions..</cars:part></part>
</book>

17 / 63

XML: What Else?

→ Attributes

→ Comments

→ Processing Instructions

→ Entity References

→ Namespaces

→ Text (a specific node kind)

<article class="story" id="news7" datetime="2017-08-08">..</article>

<!-- a comment here -->

<?php sql("SELECT * FROM .") ... ?)>

DTD: <!ENTITY notice "All rights...">
instance: <p> Copyright: ¬ice; </p>

<book xmlns="http://www.books.com/xml"
xmlns:cars="http://www.cars.com/xml">

<part><cars:part>Avoids collisions..</cars:part></part>
</book>

17 / 63

XML Today

“There is essentially no computer in the world, desktop, handheld, or
backroom, that doesn’t process XML sometimes...”

18 / 63

Some Widespread XML Dialects...

• XHTML (W3C) – the XML version of HTML
• SVG (W3C) – Animated Vector Graphics
• SMIL (W3C) – Synchronized Multimedia Documents, and MMS
• MathML (W3C) – Mathematical formulas
• XForms (W3C) – Web forms
• Fix, FPML – Financial structured products, transactions ...
• CML – Chemical molecules
• X3D (Web3D) - 3D Graphics
• XUL (Mozilla), MXML (Macromedia), XAML (Microsoft) – Interface

Definition Languages
• SOAP (RPC using HTTP), WSDL (W3C), WADL (Sun) – Web Services
• RDF (W3C), OWL (W3C) – Metadata/Knowledge in the Semantic Web
• ...

19 / 63

Outline of the Sequel

• Two notions of correctness:
• Well-formedness
• Validity

• Defining your own classes of documents
• DTDs, XML Schemas
• Modeling trees and graphs

• Parsing (with or without validation)

20 / 63

XML Defines 2 Levels of Correctness

1. Well-formed XML (minimal requirement)
• The flat text format seen on the physical side, i.e. a set of

(UTF8/16) character sequences being well-formed XML
• Ensures data correspond to logical tree-like structures

(applications that want to analyse and transform XML data in any
meaningful manner will find processing flat character sequences hard
and inefficient)

2. Valid XML (optional, stricter requirement)
• More often than not, applications require the XML input trees to

conform to a specific XML dialect, defined by e.g. a DTD

21 / 63

Well-Formed XML

<bar><e/></foo>
<c>...</c>

...
<c><e></c></e>

Not Well-formed XML

<a>
...
<c><d/><e/></c>

Well-formed XML
ed

c

a

b

...

Characters < > " ’ &
Entities < > " ' &

• Proper nesting of opening/closing tags
• Shortcut: <e/> for <e></e>
• Every attribute must have a (unique) value
• A document has one and only one root
• No ambiguity between structure and data

→ Any XML processor considers well-formed
XML as a logical tree structure which is:

- ordered (except attributes!)
- finite (leaves are empty elements or

character data)

→ It must stop for not well-formed XML.

22 / 63

Valid XML

• The header of a document may include a reference to a DTD:

<!DOCTYPE root PUBLIC "public-identifier" "uri.dtd">

• A document with such a declaration must be valid wrt the declared type

→ The parser will validate it

Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

...
</html>

23 / 63

Why Validate?

• A document type is a contract between data producers and consumers
• Validation allows:

→ a producer to check that he produces what he promised
→ a consumer to check what the producer sends
→ a consumer to protect his application
→ leaving error detection up to the parser
→ simplifying applications (we know where to find relevant information

in valid documents)
→ delivering high-speed XML throughput (once the input is validated, a

lot of runtime checks can be avoided)

24 / 63

Zoom on Document Type Definition (DTD)

• Any element e to be used in the XML dialect needs to be introduced via

<!ELEMENT e cm>

Content model cm Valid content

ANY arbitrary well-formed XML content

EMPTY no child elements allowed (attributes OK)

Reg. exp. over tag names,
#PCDATA, and constructors
| , + * ?

order and occurence of child elements and text
content must match the regular expression

• Example (XHTML 1.0 Strict DTD): <!ELEMENT img EMPTY>

25 / 63

Reg. Exp. in DTD Content Models

Reg. Exp. Semantics

tagname element named tagname

#PCDATA text content (parsed character data)

c1, c2 c1 directly followed by c2

c1 | c2 c1 or, alternatively, c2

c+ c, one or more times

c∗ c, zero or more times

c? optional c

Example: recipes.xml (fragment)
1 <!ELEMENT recipe (title,ingredient*,preparation,comment?,nutrition)>
2 <!ELEMENT title (#PCDATA)>
3 <!ELEMENT ingredient (ingredient*,preparation)?>
4 <!ELEMENT preparation (step*)>

26 / 63

Declaring Attributes

• Using the DTD ATTLIST declaration, validation of XML documents is
extended to attributes

• The ATTLIST declaration associates a list of attribute names ai with their
owning element e:
<!ATTLIST e

a1 τ1 d1

...
an τn dn

>

→ The attribute types τi define which values are valid for attributes ai .

→ The defaults di indicate if ai is required or optional (and, if absent, if
a default value should be assumed for ai).

→ In XML, attributes of an element are unordered. The ATTLIST
declaration prescribes no order of attribute usage.

27 / 63

• Via attribute types, control over the valid attribute values can be
exercised:

Attribute Type τi Semantics

CDATA character data (no < but <, ...)

(v1 | v2 | ... | vn) enumerated literal values

ID value is document-wide unique identifier for
owner element

IDREF references an element via its ID attribute

Example: academic.xml
1 <!ELEMENT academic (Firstname, Middlename*, Lastname)>
2 <!ATTLIST academic
3 title (Prof|Dr) #REQUIRED
4 team CDATA #IMPLIED
5 >
6

7 <academic title="Dr" team="Tyrex"> ... </academic>

28 / 63

• Attribute defaulting in DTDs:

Attribute Default di Semantics

#REQUIRED element must have attribute ai

#IMPLIED attribute ai is optional

v (a value) attribute ai is optinal, if absent, default value v
for ai is assumed

#FIXED v attribute ai is optional, if present, must have
value v

Example: contacts.xml
1 <!ELEMENT contact (name, email+, phone*)>
2 <!ATTLIST contact
3 emailMode (text|xhtml) "text" <!--send safely-->
4 >

29 / 63

Crossreferencing via ID and IDREF

• Well-formed XML documents essentially describe tree-structured data
• Attributes of type ID and IDREF may be used to encode graph structures

in XML. A validating XML parser can check such a graph encoding for
consistent connectivity.

• To establish a directed edge between two XML nodes a and b:

a b

1. attach a unique identifier to node b (using an ID attribute), then
2. refer to b from a via this identifier (using an IDREF attribute).
3. For an outdegree > 1 (see below), use an IDREFS attribute.

a b

c

30 / 63

Graphs in XML – An Example

Graph.xml
1 <?xml version="1.0"?>
2 <!DOCTYPE graph [
3 <!ELEMENT graph (node+) >
4 <!ELEMENT node ANY > <!-- attach arbitrary data to a node -->
5 <!ATTLIST node
6 id ID #REQUIRED
7 edges IDREFS #IMPLIED > <!-- we may have nodes with outdegree 0 -->
8]>
9

10 <graph>
11 <node id="A">a</node>
12 <node id="B" edges="A C">b</node>
13 <node id="C" edges="D">c</node>
14 <node id="D">d</node>
15 <node id="E" edges="D D">e</node>
16 </graph>

graph

a b c d e

31 / 63

Example (Character references in “ComicsML”)

ComicsML.dtd (fragment)
1 <!DOCTYPE strip [
2 ...
3 <!ELEMENT character (#PCDATA) >
4 <!ATTLIST character
5 id ID #REQUIRED >
6 <!ELEMENT bubble (#PCDATA) >
7 <!ATTLIST bubble
8 speaker IDREF #REQUIRED
9 to IDREFS #IMPLIED

10 tone (angry|question|...) #IMPLIED >
11]>

Validation results (message generated by Apache’s Xerces):
• Setting attribute to some random non-existent character identifier:

ID attribute ’yoda’ was referenced but never declared
• Using a non-enumerated value for attribute tone:

Attribute ’tone’ does not match its defined enumeration list

32 / 63

A Real-world DTD – GraphML

• GraphML5 has been designed to provide a convenient file format to
represent arbitrary graphs

• Graphs (element graph) are specified as lists of nodes and edges

• Edges point from source to target

• Nodes and edges may be annotated using arbitrary description and data
• Edges may be directed (+ attribute edgedefault of graph)

Graph.xml
1 <graphml>
2 <graph edgedefault="undirected">
3 <node id="n1"/>
4 <node id="n2"/>
5 <node id="n3"/>
6 <edge id="e1" source="n1" target="n2" directed="true"/>
7 <edge id="e2" source="n2" target="n3" directed="false"/>
8 <edge id="e3" source="n3" target="n1"/>
9 </graph>

10 </graphml>

n1

n2 n3

e1 e2

e3

5http://graphml.graphdrawing.org/
33 / 63

http://graphml.graphdrawing.org/

GraphML.dtd (main part)
1 <!-- GRAPHML DTD (flat version) === -->
2 <!ELEMENT graphml ((desc)?,(key)*,((data)|(graph))*)>
3
4 <!ELEMENT locator EMPTY>
5 <!ATTLIST locator
6 xmlns:xlink CDATA #FIXED "http://www.w3.org/TR/2000/PR-xlink-20001220/"
7 xlink:href CDATA #REQUIRED
8 xlink:type (simple) #FIXED "simple">
9

10 <!ELEMENT desc (#PCDATA)>
11
12 <!ELEMENT graph ((desc)?,((((data)|(node)|(edge)|(hyperedge))*)|(locator)))>
13 <!ATTLIST graph
14 id ID #IMPLIED
15 edgedefault (directed|undirected) #REQUIRED>
16
17 <!ELEMENT node (desc?,(((data|port)*,graph?)|locator))>
18 <!ATTLIST node
19 id ID #REQUIRED>
20
21 <!ELEMENT port ((desc)?,((data)|(port))*)>
22 <!ATTLIST port
23 name NMTOKEN #REQUIRED>
24
25 <!ELEMENT edge ((desc)?,(data)*,(graph)?)>
26 <!ATTLIST edge
27 id ID #IMPLIED
28 source IDREF #REQUIRED
29 sourceport NMTOKEN #IMPLIED
30 target IDREF #REQUIRED
31 targetport NMTOKEN #IMPLIED
32 directed (true|false) #IMPLIED>
33
34 <!ELEMENT key (#PCDATA)>
35 <!ATTLIST key
36 id ID #REQUIRED
37 for (graph|node|edge|hyperedge|port|endpoint|all) "all">
38
39 <!ELEMENT data (#PCDATA)>
40 <!ATTLIST data
41 key IDREF #REQUIRED
42 id ID #IMPLIED>

34 / 63

Concluding Remarks

• DTD syntax:
✓ Pro: compact, easy to understand
× Con: ?

35 / 63

Concluding Remarks

• DTD syntax:
✓ Pro: compact, easy to understand
× Con: not in XML!

• DTD functionality:
× no fine-grained types (everything is character data; what about, e.g.

integers?)
× no further occurence constraints (e.g. cardinality of sequences)

→ DTD is a very simple but quite limited type definition language

35 / 63

XML Schema

• With XML Schema6, W3C provides an XML type definition language that
goes beyond the capabilities of the “native” DTD concept:

• XML Schema descriptions are valid XML documents themselves
• XML Schema provides a rich set of built-in data types
• Users can extend this type system via user-defined types
• XML element (and attribute) types may even be derived by

inheritance

XML Schema vs. DTDs
→ Why would you consider its XML syntax as an advantage?

6http://www.w3.org/TR/xmlschema-0/
36 / 63

Some XML Schema Constructs

Declaring an element
• <xsd:element name="author"/>

No further typing specified: the author element may contain string values only.

Declaring an element with bounded occurence
• <xsd:element name="character" minOccurs="0" maxOccurs="unbounded"/>

Absence of minOccurs/maxOccurs implies exactly once.

Declaring a typed element
• <xsd:element name="year" type="xsd:date"/>

Content of year takes the format YYYY-MM-DD. Other simple types: string,
boolean, number, float, duration, time, AnyURI, ...

• Simple types are considered atomic with respect to XML Schema (e.g., the YYYY
part of an xsd:date value has to be extracted by the XML application itself).

37 / 63

• Non-atomic complex types are built from simple types using type
constructors.

Declaring sequenced content
1 <xsd:complexType name="Characters">
2 <xsd:sequence>
3 <xsd:element name="character" minOccurs="1"
4 maxOccurs="unbounded"/>
5 </xsd:sequence>
6 </xsd:complexType>
7 <xsd:complexType name="Prolog">
8 <xsd:sequence>
9 <xsd:element name="series"/>

10 <xsd:element name="author"/>
11 <xsd:element name="characters" type="Characters"/>
12 </xsd:sequence>
13 </xsd:complexType>
14 <xsd:element name="prolog" type="Prolog"/>

An xsd:complexType may be used anonymously (no name attribute).
• With attribute mixed="true", an xsd:complexType admits mixed

content.

38 / 63

• New complex types may be derived from an existing (base) type.
Deriving a new complex type

1 <xsd:element name="newprolog">
2 <xsd:complexType>
3 <xsd:complexContent>
4 <xsd:extension base="Prolog">
5 <xsd:element name="colored" type="xsd:boolean"/>
6 </xsd:extension>
7 </xsd:complexContent>
8 </xsd:complexType>
9 </xsd:element>

• Attributes are declared within their owner element.
Declaring attributes

1 <xsd:element name="strip">
2 <xsd:attribute name="copyright"/>
3 <xsd:attribute name="year" type="xsd:gYear"/> ...
4 </xsd:element>

Other xsd:attribute modifiers: use (required, optional,
prohibited), fixed, default.

39 / 63

• The validation of an XML document against an XML Schema goes as far
as peeking into the lexical representation of simple typed values.

Restricting the value space of a simple type (enumeration)
1 <xsd:simpleType name="Car">
2 <xsd:restriction base="xsd:string">
3 <xsd:enumeration value="Audi"/>
4 <xsd:enumeration value="BMW"/>
5 <xsd:enumeration value="VW"/>
6 </xsd:restriction>
7 </xsd:simpleType>

Restricting the value space of a simple type (regular expression)
1 <xsd:simpleType name="AreaCode">
2 <xsd:restriction base="xsd:string">
3 <xsd:pattern value="0[0-9]+"/>
4 <xsd:minLength value="3"/>
5 <xsd:maxLength value="5"/>
6 </xsd:restriction>
7 </xsd:simpleType>

• Other facets: length, maxInclusive (upper bound for numeric values)...

40 / 63

Other XML Schema Concepts

• Fixed and default element content,
• support for null values,
• uniqueness constraints, arbitrary keys (specified via XPath)

41 / 63

Intermediate Outline

• Motivations and key principles behind XML
• Languages for defining sets of documents (tree languages)
• Processing XML Documents
• Parsing

• Two radically different approaches: DOM and SAX
• Advantages and drawbacks

42 / 63

XML Processing Model

Validation is good
• Validation is better than writing code
• Remember the promise:

“you will never have to write a parser again”
→ instead, you will need to encode a grammar...

• Virtually all XML applications operate on the logical tree view which is
provided to them by an XML parser

• An XML parser can be validating or non-validating
• XML parsers are widely available (e.g. Apache’s Xerces).
• How is the XML parser supposed to communicate the XML tree structure

to the application?

43 / 63

XML Parsers

• Two different approaches:

1. Parser stores document into a fixed (standard) data structure (e.g.
DOM)

parser.parse("foo.xml");
doc = parser.getDocument();

2. Parser triggers events. Does not store! User has to write own code
on how to store / process the events triggered by the parser.

Next slides on DOM & SAX by Marc H. Scholl (Uni KN)...

44 / 63

45 / 63

46 / 63

47 / 63

48 / 63

49 / 63

50 / 63

51 / 63

52 / 63

53 / 63

54 / 63

55 / 63

56 / 63

57 / 63

58 / 63

59 / 63

60 / 63

61 / 63

62 / 63

Concluding Remarks

We have seen:
• Motivation for XML (where XML originates from and what it is aimed for)
• What is fundamental with XML:

1. standard for structured information
2. independence from processors
3. well-formed documents can be processed as trees
4. users may agree on a dialect and save coding effort, they can

exchange valid documents and the schemas...
• How the XML meta-language works, how to define your own XML dialect

(using a schema language e.g. DTD, XML Schema...)
• How/when to use the 2 different kinds of XML parsers (DOM, SAX)

→ Welcome to the world of tree-structured information!

63 / 63

	Introduction to XML
	Data vs. Programs
	Legacy from the Past
	Motivation for XML
	The Markup Language
	Standards for Data Exchange: Overview
	XML for Data Exchange
	The XML Meta-Language
	XML Type Definitions
	Other XML Features
	Sample XML Dialects

	Well-Formedness & Validity
	Well-Formedness
	Validity
	Why Validate?

	DTD
	Element Content Models
	Attributes
	Non-Hierarchical References

	XML Schema
	Declaring Elements
	Content Models
	Typing Values

	XML Processing Model
	XML Parsing
	DOM
	SAX

	Summary

