Course: XML Essentials

Pierre Genevés
CNRS

University Grenoble Alpes

1/63

Programming Languages

1954 1960 1965 1970 1975 1980 1985 1990 1995

2000 2005 2023

Objective CAML (1996)

FORTRAN (1954) C # (1SO) (2003)

LISP (1958)

Scala (2003)

Even more “DSLs", e.g. SPARQL (2008), Julia (2009), XQuery (2010)

Frequent renewal, rapid evolution

2 /63

Data

e Often, data are more important than programs

3 /63

Data

e Often, data are more important than programs

® One reason for this is that data often have a much longer life cycle
than programs

® Examples: banking, aeronautical technical documentation, etc.

3 /63

Example: Aeronautical Technical Documentation

In aeronautics, it is common to find products with life cycles that last for
several decades, e.g. the B-52:

decades

™~

Microsoft !
1

1945 1952 1975 1989 2018 2023

a/63

— How to ensure long-term
access to data?

— How to design systems such
that manipulated data can still
be read 15 or 50 years later?

5 /63

— How to ensure long-term
access to data?

— How to design systems such
that manipulated data can still
be read 15 or 50 years later?

— An old concern...

La pierre de Rosette (The Rosetta Stone).

5 /63

How to ensure long-term
access to data?

How to design systems such
that manipulated data can still
be read 15 or 50 years later?

An old concern...

Can we really do better with
computers?

La pierre de Rosette (The Rosetta Stone).

5 /63

How to ensure long-term
access to data?

How to design systems such
that manipulated data can still
be read 15 or 50 years later?

An old concern...

Can we really do better with
computers?

A computer museum? ©

La pierre de Rosette (The Rosetta Stone).

5 /63

What has not changed for 50 years in information
representation?

6 /63

What has not changed for 50 years in information
representation?

1963 now

ASCII

6 /63

The Data Exchange Problem

® Often, data must be sent to a third-party program/person
® Data must be made explicit (e.g. storage in files)
® Naive® approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

1But used to be very widespread... s

The Data Exchange Problem

® Often, data must be sent to a third-party program/person
® Data must be made explicit (e.g. storage in files)
® Naive® approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

MachinCompany
File format X
Parser Px

1But used to be very widespread... s

The Data Exchange Problem

® Often, data must be sent to a third-party program/person
® Data must be made explicit (e.g. storage in files)
® Naive® approach for defining a file format:
- Define (binary?) representation for data + instructions, e.g. records

- Write file format spec (v1.0?) + implement parser

Bidule Inc.
File format Y’
Parser Py

MachinCompany
File format X
Parser Px

1But used to be very widespread... s

The Data Exchange Problem

® Often, data must be sent to a third-party program/person
® Data must be made explicit (e.g. storage in files)
® Naive® approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

Bidule Inc.
File format Y .
Parser Py ‘\ﬁ
MachinCompany
| File format X _——

Parser P;
x TrucMuche SA

File format Z
Parser Pz

1But used to be very widespread... s

The Data Exchange Problem

® Often, data must be sent to a third-party program/person
® Data must be made explicit (e.g. storage in files)
® Naive® approach for defining a file format:

- Define (binary?) representation for data + instructions, e.g. records
- Write file format spec (v1.0?) + implement parser

71

Bidule Inc.
File format Y

Parser Py ﬁ “‘ 7i
MachinCompany

| File format X -~
Parser Px

TrucMuche SA
File format Z

W Parser Pz
® Problems: - exchanging data — exchanging programs!
- this approach cannot scale (and costs $*%%)

— Need for normalization of data exchange

1But used to be very widespread... s

Motivation for XML:

To have one language to describe and exchange data

8/63

XML = Data

Pierre Genevés
CNRS
pierre.genevesQ@inria.fr

Nabil Layaida
INRIA
nabil.layaida@inria.fr

Text file

9/63

XML = Data + Structure

<people>

Pierre Genevés <person> .

CNRS <name>Pierre Genevés</name>
<affil>CNRS</affil>
<email>pierre.genevesQinria.fr< /email >
< /person>

pierre.genevesQ@inria.fr
R
“Mark it up!”

<person>

Nabil Layaida . .
INRIA <name>Nabil Layaida</name>

<affil>INRIA< /affil>
<email>nabil.layaida@inria.fr< /email >
</person>

< /people>

nabil.layaida@inria.fr

Text file

XML Document

9/63

XML = Data + Structure

<people>

Pierre Genevés <person> .

CNRS <name>Pierre Genevés</name>
<affil>CNRS</affil>
<email>pierre.genevesQinria.fr< /email >
< /person>

pierre.genevesQ@inria.fr
R
“Mark it up!”

<person>

Nabil Layaida . .
INRIA <name>Nabil Layaida</name>

<affil>INRIA< /affil>
<email>nabil.layaida@inria.fr< /email >
</person>

< /people>

nabil.layaida@inria.fr

Text file

XML Document
Tags describe structure, independently from processors (tags

are not implicit parameters for a given processor, e.g. tags
are not intended for describing presentation)

9/63

XML = Data + Structure

<people>

Pierre Genevés <person> .

CNRS <name>Pierre Genevés</name>
<affil>CNRS</affil>
<email>pierre.genevesQinria.fr< /email >
< /person>

pierre.genevesQ@inria.fr
R
“Mark it up!”

<person>

Nabil Layaida . .
INRIA <name>Nabil Layaida</name>

<affil>INRIA< /affil>
<email>nabil.layaida@inria.fr< /email >
</person>

< /people>

nabil.layaida@inria.fr

Text file

XML Document

Is this a good template? What about first/last name?
Several affil's? email’s...?

9/63

XML Documents

Ordinary text files (UTF8, UTF16, ...)
Originates from typesetting/DocProcessing community

Idea of labeled brackets (“mark up") for structure is not new (already used
by Chomsky in the 1960’s)

Properly nested brackets/tags describe a tree structure
Allows applications from different vendors to exchange data
Standardized, extremely widely accepted

A Lingua franca for structured data exchange...

10/ 63

Standards for Data Exchange

1963 1998 now
L 'y }
ASCII XML

® Before: file format tied to a processor (due to
processor-specific instructions)

® After: markup language for describing (structured)
data in itself (independently from processors)

11 /63

XML History

Ancestors

1974 SGML (Charles Goldfarb at IBM Research)

1989 HTML (Tim Berners-Lee at CERN, Geneva)

1994 Berners-Lee founds World Wide Web Consortium (W3C)

1996 XML (W3C draft, v1.0 in 1998)
http://www.w3.org/TR/REC-xml/

12 / 63

Initial W3C Goals for XML?2

“The design goals for XML are:

1.

S NNV

A

XML shall be straightforwardly usable over the Internet.

. XML shall support a wide variety of applications.
. XML shall be compatible with SGML.

. It shall be easy to write programs which process XML documents.

The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

XML documents should be human-legible and reasonably clear.
The XML design should be prepared quickly.

The design of XML shall be formal and concise.

XML documents shall be easy to create.

Terseness is of minimal importance.”

%http://www.w3.org/TR/WD-xm1-961114

13 /63

http://www.w3.org/TR/WD-xml-961114

XML is a Data Exchange Format

® Contra.. extremely verbose, lots of repetitive markup, large files

® Pro.. answers ambitious goals:

— long-standing (mark-up does not depend on the system where it was
created nor on processings)

— One of the pillars of the web
— We have A STANDARD!

— If you use XML properly, you will never need to write a parser again

14 / 63

XML is a Meta-Language

® XML makes it possible to create Markup-Languages

® |nstead of writing a parser, you simply fix your own “XML Dialect”

by describing all “admissible structures” :

® allowed element names
® how they can be assembled together
® maybe even the specific data types that may appear inside

You do this using an XML Type definition language such as DTD?, XML
Schema (W3C), or Relax NG (Oasis).

Of course, such type definition languages are simple, because you want
the parsers to be efficient!

3Part of the XML Recommendation: http://www.w3.org/TR/REC-xml/16

15 / 63

XML Document Type Definition

® The XML Recommendation® includes an XML type definition language for
specifying document types: DTD

i I
people — (colleague | friend)* /pe/ope\
colleague — name, affil™, email clleoges -+ biend
friend — name, affil*, phone*, email? VAR |
name affil email name
Document Type

® Each element is associated with its content model: a reg. expr. (,

7x4)
® A document type (a set of such associations + a particular root element)
describes a set of valid documents used by an organisation

“http://www.w3.org/ TR/REC-xml/

16 / 63

A

XML: What Else?

Attributes

Comments

Processing Instructions
Entity References
Namespaces

Text (a specific node kind)

17 / 63

XML: What Else?

<article class="story" id="news7" datetime="2017-08-08">..</article>

Attributes

Comments

Processing Instructions
Entity References

Namespaces

A

Text (a specific node kind)

17 / 63

XML: What Else?

<article class="story" id="news7" datetime="2017-08-08">..</article>

A

<!-- a comment here -->
Attributes

Comments

Processing Instructions
Entity References
Namespaces

Text (a specific node kind)

17 / 63

XML: What Else?

<article class="story" id="news7" datetime="2017-08-08">..</article>

A

<!-- a comment here -->
Attributes

Comments

Processing Instructions <?php sql("SELECT * FROM .")
Entity References

Namespaces

Text (a specific node kind)

?)>

17 / 63

XML: What Else?

<article class="story" id="news7" datetime="2017-08-08">..</article>

A

<!-- a comment here -->
Attributes
Comments
Processing Instructions <7php sql("SELECT * FROM .") ... 7)>
Entity References DTD: <!ENTITY notice "All rights...">
Namespaces instance: <p> Copyright: ¬ice; </p>

Text (a specific node kind)

17 / 63

XML: What Else?

<article class="story" id="news7" datetime="2017-08-08">..</article>

A

<!-- a comment here -->
Attributes
Comments
Processing Instructions <?php sql("SELECT * FROM .") ... 7)>
Entity References DTD: <!ENTITY notice "All rights...">
Namespaces instance: <p> Copyright: ¬ice; </p>

Text (a specific node kind)

<book xmlns="http://www.books.com/xml"
xmlns:cars="http://www.cars.com/xml">
<part><cars:part>Avoids collisions..</cars:part></part>
</book>

17 / 63

XML: What Else?

<article class="story" id="news7" datetime="2017-08-08">..</article>

A

<!-- a comment here -->
Attributes
Comments
Processing Instructions <?php sql("SELECT * FROM .") ... 7)>
Entity References DTD: <!ENTITY notice "All rights...">
Namespaces instance: <p> Copyright: ¬ice; </p>

Text (a specific node kind)

<book xmlns="http://www.books.com/xml"
xmlns:cars="http://www.cars.com/xml">
<part><cars:part>Avoids collisions..</cars:part></part>
</book>

17 / 63

XML Today

“There is essentially no computer in the world, desktop, handheld, or
backroom, that doesn’t process XML sometimes...”

18 / 63

Some Widespread XML Dialects...

XHTML (W3C) - the XML version of HTML

SVG (W3C) — Animated Vector Graphics

SMIL (W3C) — Synchronized Multimedia Documents, and MMS
MathML (W3C) — Mathematical formulas

XForms (W3C) — Web forms

Fix, FPML - Financial structured products, transactions ...
CML — Chemical molecules

X3D (Web3D) - 3D Graphics

XUL (Mozilla), MXML (Macromedia), XAML (Microsoft) — Interface
Definition Languages

SOAP (RPC using HTTP), WSDL (W3C), WADL (Sun) — Web Services
RDF (W3C), OWL (W3C) — Metadata/Knowledge in the Semantic Web

19 / 63

Outline of the Sequel

® Two notions of correctness:

® \Well-formedness
® Validity

® Defining your own classes of documents

® DTDs, XML Schemas
® Modeling trees and graphs

® Parsing (with or without validation)

20/ 63

XML Defines 2 Levels of Correctness

1. Well-formed XML (minimal requirement)

® The flat text format seen on the physical side, i.e. a set of
(UTF8/16) character sequences being well-formed XML

® Ensures data correspond to logical tree-like structures
(applications that want to analyse and transform XML data in any
meaningful manner will find processing flat character sequences hard
and inefficient)

2. Valid XML (optional, stricter requirement)

® More often than not, applications require the XML input trees to
conform to a specific XML dialect, defined by e.g. a DTD

21 /63

Well-Formed XML

<bar><e/></foo>
<c>...</c>

Not Well-formed XML

...
<c><e></c></e>

<a>

...
<c><d/><e/></c>

Well-formed XML

[Characters [< | >

‘ Entities ‘ < ‘ > ‘ " ‘ ' ‘ & ‘

Proper nesting of opening/closing tags
Shortcut: <e/> for <e></e>

Every attribute must have a (unique) value
A document has one and only one root

No ambiguity between structure and data

Any XML processor considers well-formed
XML as a logical tree structure which is:

- ordered (except attributes!)
- finite (leaves are empty elements or
character data)

It must stop for not well-formed XML.

29 /63

Valid XML

® The header of a document may include a reference to a DTD:
<!DOCTYPE root PUBLIC "public-identifier" "uri.dtd">
® A document with such a declaration must be valid wrt the declared type

— The parser will validate it

Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

</html>

23 /63

Why Validate?

® A document type is a contract between data producers and consumers

® Validation allows:

—

—
—
—
—

—

a producer to check that he produces what he promised

a consumer to check what the producer sends

a consumer to protect his application

leaving error detection up to the parser

simplifying applications (we know where to find relevant information
in valid documents)

delivering high-speed XML throughput (once the input is validated, a
lot of runtime checks can be avoided)

24 /63

Zoom on Document Type Definition (DTD)

® Any element e to be used in the XML dialect needs to be introduced via

<!ELEMENT e cm>

Content model cm Valid content
ANY arbitrary well-formed XML content
EMPTY no child elements allowed (attributes OK)

Reg. exp. over tag names, order and occurence of child elements and text
#PCDATA, and constructors content must match the regular expression
|, + %7

® Example (XHTML 1.0 Strict DTD): <!ELEMENT img EMPTY>

25 /63

oW N e

Reg. Exp. in DTD Content Models

Reg. Exp. Semantics

tagname element named tagname

#PCDATA text content (parsed character data)
c1, C2 c1 directly followed by c>

ale ¢ or, alternatively,

ct ¢, one or more times

c* ¢, zero or more times

c? optional ¢

Example: recipes.xml (fragment)
<!ELEMENT recipe (title,ingredient*,preparation,comment?,nutrition)>
<!ELEMENT title (#PCDATA)>

<!ELEMENT ingredient (ingredient*,preparation)?>

<!ELEMENT preparation (step*)>

26 / 63

Declaring Attributes

® Using the DTD ATTLIST declaration, validation of XML documents is
extended to attributes

® The ATTLIST declaration associates a list of attribute names a; with their
owning element e:
<!'ATTLIST e
aa T di

an Tn dn

— The attribute types 7; define which values are valid for attributes a;.

— The defaults d; indicate if a; is required or optional (and, if absent, if
a default value should be assumed for a;).

— In XML, attributes of an element are unordered. The ATTLIST
declaration prescribes no order of attribute usage.

27 /63

Bw N e

N o o

® Via attribute types, control over the valid attribute values can be

exercised:
Attribute Type 7; Semantics
CDATA character data (no < but &1t;, ...)
(vi|va] .| va) enumerated literal values
ID value is document-wide unique identifier for
owner element
IDREF references an element via its ID attribute

Example: academic.xml

<1ELEMENT academic (Firstname, Middlename*, Lastname)>
<VATTLIST academic

title (Prof|Dr) #REQUIRED

team CDATA #IMPLIED

<academic title="Dr" team="Tyrex"> ... </academic>

28 / 63

S

® Attribute defaulting in

DTDs:

Attribute Default d;

Semantics

#REQUIRED
#IMPLIED

v (a value)

#FIXED v

element must have attribute a;
attribute a; is optional

attribute a; is optinal, if absent, default value v
for a; is assumed

attribute a; is optional, if present, must have
value v

<!ELEMENT contact (name,
<!ATTLIST contact
emailMode (text|xhtml)

Example: contacts.xml

email+, phonex)>

"text" <!--send safely-->

290 /63

Crossreferencing via ID and IDREF

® Well-formed XML documents essentially describe tree-structured data

® Attributes of type ID and IDREF may be used to encode graph structures
in XML. A validating XML parser can check such a graph encoding for
consistent connectivity.

® To establish a directed edge between two XML nodes a and b:

/\

a b

1. attach a unique identifier to node b (using an ID attribute), then
2. refer to b from a via this identifier (using an IDREF attribute).
3. For an outdegree > 1 (see below), use an IDREFS attribute.

a b

N

30/ 63

© W N oA W N e

N e
Gk W N RO

-
=Y

Graphs in XML — An Example

Graph.xml
<?xml version="1.0"7>
<!DOCTYPE graph [
<!ELEMENT graph (node+) >
<!ELEMENT node ANY > <!-- attach arbitrary data to a node -->
<!ATTLIST node
id ID #REQUIRED
edges IDREFS #IMPLIED > <!-- we may have nodes with outdegree 0 -->
1>

<graph>
<node id="A">a</node>
<node id="B" edges="A C">b</node>
<node id="C" edges="D">c</node>
<node id="D">d</node>
<node id="E" edges="D D">e</node>
</graph>

31 /63

© 0 N ;A W N

e
= o

Example (Character references in “ComicsML")

ComicsML.dtd (fragment)

<!DOCTYPE strip [

<!ELEMENT character (#PCDATA) >
<VATTLIST character
id D #REQUIRED >
<!ELEMENT bubble (#PCDATA) >
<!ATTLIST bubble

speaker IDREF #REQUIRED
to IDREFS #IMPLIED
tone (angrylquestion|...) #IMPLIED >

1>

Validation results (message generated by Apache's Xerces):

® Setting attribute to some random non-existent character identifier:
ID attribute ’yoda’ was referenced but never declared
® Using a non-enumerated value for attribute tone:
Attribute ’tone’ does not match its defined enumeration list

32 /63

A Real-world DTD — GraphML

® GraphML® has been designed to provide a convenient file format to
represent arbitrary graphs

® Graphs (element graph) are specified as lists of nodes and edges
® Edges point from source to target
® Nodes and edges may be annotated using arbitrary description and data

® Edges may be directed (+ attribute edgedefault of graph)

Graph.xml

Bow N =

[SEECRE I B

<graphml>
<graph edgedefault="undirected">

<node id="n1"/>

<node id="n2"/> a 2
<node id="n3"/>

<edge id="el" source="nl" target="n2" directed="true"/> n> n3
<edge id="e2" source="n2" target="n3" directed="false"/> ~_
<edge id="e3" source="n3" target="n1"/> €3

</graph>
</graphml>

Shttp://graphml.graphdrawing.org/ 13 /63

http://graphml.graphdrawing.org/

© 00N OO AW

GraphML.dtd (main part)

<!-- GRAPHML DTD (flat version) -->

<!ELEMENT

<!ELEMENT
<!ATTLIST

<!ELEMENT

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

graphml ((desc)?, (key)*, ((data) | (graph))*)>

locator EMPTY>

locator

xmlns:xlink CDATA #FIXED "http://www.w3.org/TR/2000/PR-x1ink-20001220/"
xlink:href ~ CDATA #REQUIRED

xlink:type (simple) #FIXED "simple">

desc (#PCDATA)>

graph ((desc)?, ((((data) | (node) | (edge) | (hyperedge))*) | (locator)))>
graph

id 1D #IMPLIED

edgedefault (directed|undirected) #REQUIRED>

node (desc?, (((datalport)*,graph?)|locator))>
node
id poy) #REQUIRED>

port ((desc)?, ((data) | (port))*)>
port

name NMTOKEN #REQUIRED>

edge ((desc)?, (data)*, (graph)?)>

edge
id i) #IMPLIED
source IDREF #REQUIRED
sourceport NMTOKEN #IMPLIED
target IDREF #REQUIRED
targetport NMTOKEN #IMPLIED

directed (true|false) #IMPLIED>

key (#PCDATA)>

key

id 1D #REQUIRED
for (graphlnode|edge |hyperedge|port |endpoint|all) "all">

data (#PCDATA)>

data
key IDREF #REQUIRED
id D #IMPLIED>

34 /63

Concluding Remarks

® DTD syntax:

v Pro: compact, easy to understand
x Con: ?

35 /63

Concluding Remarks

® DTD syntax:

Pro: compact, easy to understand
x Con: not in XML!

e DTD functionality:

% no fine-grained types (everything is character data; what about, e.g.
integers?)
% no further occurence constraints (e.g. cardinality of sequences)

— DTD is a very simple but quite limited type definition language

35 /63

XML Schema

® With XML Schema®, W3C provides an XML type definition language that
goes beyond the capabilities of the “native” DTD concept:

XML Schema descriptions are valid XML documents themselves
XML Schema provides a rich set of built-in data types

Users can extend this type system via user-defined types

XML element (and attribute) types may even be derived by
inheritance

XML Schema vs. DTDs

— Why would you consider its XML syntax as an advantage?

Shttp://www.w3.org/ TR /xmlschema-0/

36 / 63

Some XML Schema Constructs

Declaring an element
’ <xsd:element name="author"/> ‘

No further typing specified: the author element may contain string values only.

Declaring an element with bounded occurence
<xsd:element name="character" minOccurs="0" maxOccurs="unbounded"/>

Absence of minOccurs/max0ccurs implies exactly once.

Declaring a typed element
’ <xsd:element name="year" type="xsd:date"/>

Content of year takes the format YYYY-MM-DD. Other simple types: string,
boolean, number, float, duration, time, AnyURI,

Simple types are considered atomic with respect to XML Schema (e.g., the YYYY
part of an xsd:date value has to be extracted by the XML application itself).

37 /63

® Non-atomic complex types are built from simple types using type

constructors. .
Declaring sequenced content

<xsd:complexType name="Characters">
<xsd:sequence>
<xsd:element name="character" minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Prolog">
<xsd:sequence>
<xsd:element name="series"/>
<xsd:element name="author"/>
<xsd:element name="characters" type="Characters"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="prolog" type="Prolog"/>

An xsd:complexType may be used anonymously (no name attribute).

® With attribute mixed="true", an xsd:complexType admits mixed
content.

38 / 63

[SA B VR C I

© 0 N o

S

® New complex types may be derived from an existing (base) type.

Deriving a new complex type

<xsd:element name="newprolog">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="Prolog">
<xsd:element name="colored" type="xsd:boolean"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

Attributes are declared wim}igltheir owner. element.

aring attributes
<xsd:element name="strip">
<xsd:attribute name="copyright"/>
<xsd:attribute name="year" type="xsd:gYear"/>
</xsd:element>

Other xsd:attribute modifiers: use (required, optional,
prohibited), fixed, default.

30 /63

N o oA W N e

[

N o o

® The validation of an XML document against an XML Schema goes as far
as peeking into the lexical representation of simple typed values.

<xsd:simpleType name="Car">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Audi"/>
<xsd:enumeration value="BMW"/>
<xsd:enumeration value="VW"/>
</xsd:restriction>
</xsd:simpleType>

Restricting the value space of a simple type (enumeration) —

Restricting the value space of a simple type (regular expression)
<xsd:simpleType name="AreaCode">
<xsd:restriction base="xsd:string">
<xsd:pattern value="0[0-9]+"/>
<xsd:minLength value="3"/>
<xsd:maxLength value="5"/>
</xsd:restriction>
</xsd:simpleType>

® Other facets: length, maxInclusive (upper bound for numeric values)...

40/ 63

Other XML Schema Concepts

® Fixed and default element content,
® support for null values,

® uniqueness constraints, arbitrary keys (specified via XPath)

a1 /63

Intermediate Outline

Motivations and key principles behind XML

Languages for defining sets of documents (tree languages)
Processing XML Documents

Parsing

® Two radically different approaches: DOM and SAX
® Advantages and drawbacks

a2 / 63

XML Processing Model

Validation is good

Validation is better than writing code
Remember the promise:

“you will never have to write a parser again”
— instead, you will need to encode a grammar...

Virtually all XML applications operate on the logical tree view which is
provided to them by an XML parser

An XML parser can be validating or non-validating
XML parsers are widely available (e.g. Apache’s Xerces).

How is the XML parser supposed to communicate the XML tree structure
to the application?

a3 / 63

XML Parsers

® Two different approaches:

1. Parser stores document into a fixed (standard) data structure (e.g.
DOM)

parser.parse("foo.xml");
doc = parser.getDocument () ;

2. Parser triggers events. Does not store! User has to write own code
on how to store / process the events triggered by the parser.

Next slides on DOM & SAX by Marc H. Scholl (Uni KN)...

a4 / 63

DOM—Document Object Model

@ With DOM, W3C has defined a language- and platform-neutral
view of XML documents.

@ DOM APIs exist for a wide variety of—predominantly
object-oriented—programming languages (Java, C++, C, Perl,
Python, ...).

@ The DOM design rests on two major concepts:

@ An XML Processor offering a DOM interface parses the XML input
document, and constructs the complete XML document tree
(in-memory).

@ The XML application then issues DOM library calls to explore and
manipulate the XML document, or generate new XML documents.

/\C(D
<N

;

DOM
Library

XML
Application

< m]L]..

parentliode() (D)

a5 / 63

@ (The complete DOM interface is too large to list here.) Some
methods of the principal DOM types Node and Document:

DOM Type Method Comment
Node nodelName :: DOMString redefined in subclasses, e.g., tag
name for Element, "#text" for Text
nodes, ...
parentNode it Node
first Child :: Node leftmost child node
nextSibling 2 Node returns NULL for root element or last
child or attributes
childNodes :: NodelList see below
attributes NameNodeMap see below
ownerDocument Document
replaceChild :: Node replace new for old node, returns old
Document createElement Element creates element with given tag name
createComment Comment creates comment with given content
getElementsBy Taghame :: NodeList list of all Elem nodes in document or-

der

46 / 63

Example: C++/DOM Code

77 verees o SR IEENESS.(1)

#include <dom/DOM.hpp>
#include <parsers/DOMParser.hpp>

woid collect (DOM_NodeList ns)
{
DOM_Node n;

for (unsigned long i = 0;
i < ns.getlength ;
i) {
n = ns.item (i);

switch (n.getNodeType ()) {

case DOM_Node::TEXT_NODE:
cout << n.getNodeValue ().transcode ();
break;

case DOM_Node: : ELEMENT_NODE:
collect (n.getChildlNodes ());

}

}
i

Now: Find all occurrences of Dogbert speaking (attribute speaker of

element bubble)

content.cc (2)

0id content (DOM_Document d)

collect (d.getChildNodes ());

int main (void)
XMLPlatformUtils::Initialize ();

DOMParser parser;
DOM_Document doc;

parser.parse ("foo.xml");
doc = parser.getDocument ();

content (doc);

return 0;

a7 / 63

dogbert.cc (1)

// Xerces C++ DOM API support
#include <dom/DOM.hpp>
#include <parsers/DOMParser.hpp>

void dogbert (DOM_Document d)

{
DOM_NodeList bubbles;
DOM_Node bubble, speaker;
DOM_NamedNodeMap attrs;

bubbles = d.getElementsByTagName ("bubble'");

for (unsigned long i = 0; i < bubbles.getLength (); i++) {
bubble = bubbles.item (i);

attrs = bubble.getAttributes ();
if (attrs != 0)
if ((speaker = attrs.getNamedItem ("speaker")) != 0)
if (speaker.getNodeValue ().
compareString (DOMString ("Dogbert")) == 0)
cout << "Found Dogbert speaking." << endl;

a8 / 63

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

int main (void)

{

XMLPlatformUtils::Initialize ();

DOMParser parser;
DOM_Document doc;

parser.parse ("foo.xml");
doc = parser.getDocument ();

dogbert (doc);

return 0;

dogbert.cc (2)

490 / 63

DOM—A Memory Bottleneck

@ The two-step processing approach ((T) parse and construct XML
tree, (3) respond to DOM property function calls) enables the DOM
to be “random access”:

The XML application may explore and update any portion of the
XML tree at any time.
@ The inherent memory hunger of the DOM may lead to
@ heavy swapping activity
(partly due to unpredictable memory access patterns, madvise() less
helpful)
or
@ even “out-of-memory” failures.
(The application has to be extremely careful with its own memory
management, the very least.)

50/ 63

Numbers

@ DOM and random node access

Even if the application touches a single element node only, the DOM API
has to maintain a data structure that represents the whole XML input
document (all sizes in kB):®

DSIZ
XML DOM process XML size Comment
size size DSIZ
7480 47476 683 (Shakespeare’s works) many elements con-
taining small text fragments
113904 552104 4.8 (Synthetic eBay data) elements containing

relatively large text fragments

®The random access nature of the DOM makes it hard to provide a truly “lazy”
APl implementation.

51 /63

To remedy the memory hunger of DOM-based
processing . ..

@ Try to preprocess (i.e., filter) the input XML document to reduce
its overall size.

» Use an XPath/XSLT processor to preselect interesting document
regions,

> no updates to the input XML document are possible then,

- make sure the XPath/XSLT processor is not implemented on top
of the DOM.

Or

@ Use a completely different approach to XML processing (— SAX).

52 /63

SAX—Simple AP| for XML

@ SAX’ (Simple API for XML) is, unlike DOM, not a W3C standard,

but has been developed jointly by members of the XML-DEV mailing
list (ca. 1998).

@ SAX processors use constant space, regardless of the XML input
document size.

» Communication between the SAX processor and the backend XML
application does not involve an intermediate tree data structure.

» Instead, the SAX parser sends events to the application whenever a
certain piece of XML text has been recognized (i.e., parsed).

» The backend acts on/ignores events by populating a callback
function table.

“http://waw.saxproject.org/

53 /63

Sketch of SAX’'s mode of operations

startElementl. _ _ callback table

el

N /,,__QT

s ~characters!

;-

SAX
@

@ A SAX processor reads its input document sequentially and once
only.

@ No memory of what the parser has seen so far is retained while
parsing. As soon as a @ significant bit of XML text has been
recognized, an event is sent.

@ The application is able to act on events in parallel with the parsing
prodaress.

XML
Application

54 /63

SAX Events

@ To meet the constant memory space requirement, SAX reports
fine-grained parsing events for a document:

Event ...reported when seen Parameters sent
startDocument <?xml...?>°

endDocument (EOF)

startElement <t a1=vp ... ap=vp> t, (a1, w), ..., (an, va)
endElement </t> t

characters text content Unicode buffer ptr, length
comment <l=-c--> c

processinglnstruction <7t pi?> t, pi

8N.B.: Event startDocument is sent even if the optional XML text declaration

should be missing.

55 /63

[CI

o

o

-1

dilbert.xml

<7xml encoding="utf-8"7> x;
<bubbles> +*3

<!-— Dilbert looks stunned --> *3

<bubble speaker="phb" to="dilbert"> +*4
Tell the truth, but do it in your usual engineering way
so that no one understands you. =*g

</bubble> x*g
</bubbles> *7 xg

Event® 1° Parameters sent
*1 startDocument
*2 startElement t = "bubbles"
*3 comment ¢ = "_Dilbert looks stunned."
*4 startElement t = "bubble", ("speaker","phb"), ("to", "dilbert")
*5 characters buf = "Tell the...understands you.", len = 99
*6 endElement t = "bubble"
*7 endElement t = "bubbles"
*g endDocument
%Events are reported in document reading order x1, %, ..., *5.

N.B.: Some events suppressed (white space).

56 / 63

SAX Callbacks

@ To provide an efficient and tight coupling between the SAX
frontend and the application backend, the SAX API employs
function callbacks:!!

@ Before parsing starts, the application registers function references in
a table in which each event has its own slot:

Event Callback Event ‘ Callback

startElement
endElement

startElement | startElement ()

? =
? SAXiegister(startElement. o i lement endElement ()

startElement ())
SAXregister(endElement,
endElement ())

@ The application alone decides on the implementation of the functions
it registers with the SAX parser.

© Reporting an event x; then amounts to call the function (with
parameters) registered in the appropriate table slot.

HMuch like in event-based GUI libraries.

57 /63

@ Java SAX API

In Java, populating the callback table is done via implementation of the
SAX ContentHandler interface: a ContentHandler object represents

the callback table, its methods (e.g., public void endDocument ())

represent the table slots.

Example: Reimplement content.cc shown earlier for DOM (find all XML
text nodes and print their content) using SAX (pseudo code):

content (File f) print Text ((Unicode) buf, Int len)

// register the callback,

Int i;
// we ignore all other events)
SAXregister (characters, print Text); foreach /€ 1.../en do
SAXparse (); | print (buf[i]);

return: return;

58 / 63

SAX and the XML Tree Structure

DO DU W

@ Looking closer, the order of SAX events reported for a document is
determined by a preorder traversal of its document treel?:

w3 DOCy g

Elem,;--a
Sample XML document *2 *15

*1
<a>sp by Elem, g «s Comment . Elem. , <
x3 fooxg </b+sg :
<!--sample-->x¢ i
<coag w4 Text "sample" . Elem,,-d .,; Elem, ;e
<d>xg barxg </d>x1g H
<e>x11 bazx1p </e>+13 :
<fe>xyy "foo" *g Text x12 Text
k15 *1g i

har "haz"

N.B.: An Elem [Doc] node is associated with two SAX events, namely startElement

and endElement [startDocument, endDocument].

25equences of sibling Char nodes have been collapsed into a single Text node.

59 / 63

Challenge

@ This left-first depth-first order of SAX events is well-defined, but
appears to make it hard to answer certain queries about an XML
document tree.

% Collect all direct children nodes of an Elem node.

In the example on the previous slide, suppose your application has just
received the startElement(t = "a") event %2 (i.e., the parser has just
parsed the opening element tag <a>).

With the remaining events %3 ... x16 still to arrive, can your code detect
all the immediate children of Elem node a (i.e., Elem nodes b and c as
well as the Comment node)?

60 /63

The previous question can be answered more generally:

SAX events are sufficient to rebuild the complete XML document
tree inside the application. (Even if we most likely don't want to.)

SAX-based tree rebuilding strategy (sketch):

@ [startDocument]
Initialize a stack S of node IDs (e.g. € Z). Push first ID for this node.

© [startElement]
Assign a new ID for this node. Push the ID onto S.'2

© |[characters, comment, ..]
Simply assign a new node ID.

@ [endElement, endDocument]
Pop S (no new node created).

@ Invariant: The top of S holds the identifier of the current parent node.

In callbacks () and (3 we might wish to store further node details in a table or
similar summary data structure.

61 /63

Final Remarks on SAX

@ For an XML document fragment shown on the left, SAX might
actually report the events indicated on the right:

XML fragment XML 4 SAX events

1 <affiliation> 1 <affiliation>x*;
2 AT&T Labs 2 ATxo& x3T Labs
3 </affiliation> 3 *x4</affiliation>*s

x1 startElement(affiliation)
*o characters("\n__AT",5)

x3 characters("&", 1)

x4 characters("T_Labs\n", 7)
x5 endElement(affiliation)

<> White space is reported.

<> Multiple characters events may be sent for text content (although
adjacent).
(Often SAX parsers break text on entities, but may even report each character on
its own.)

62 /63

Concluding Remarks

We have seen:
® Motivation for XML (where XML originates from and what it is aimed for)
® What is fundamental with XML:

1. standard for structured information

2. independence from processors

3. well-formed documents can be processed as trees

4. users may agree on a dialect and save coding effort, they can
exchange valid documents and the schemas...

® How the XML meta-language works, how to define your own XML dialect
(using a schema language e.g. DTD, XML Schema...)

® How/when to use the 2 different kinds of XML parsers (DOM, SAX)

— Welcome to the world of tree-structured information!

63 /63

	Introduction to XML
	Data vs. Programs
	Legacy from the Past
	Motivation for XML
	The Markup Language
	Standards for Data Exchange: Overview
	XML for Data Exchange
	The XML Meta-Language
	XML Type Definitions
	Other XML Features
	Sample XML Dialects

	Well-Formedness & Validity
	Well-Formedness
	Validity
	Why Validate?

	DTD
	Element Content Models
	Attributes
	Non-Hierarchical References

	XML Schema
	Declaring Elements
	Content Models
	Typing Values

	XML Processing Model
	XML Parsing
	DOM
	SAX

	Summary

