Graph Querying

Pierre Geneves
CNRS

UGA

Université
Grenoble Alpes

1/28

Declarative Graph Querying

isLocatedin

Europe

isLocatedIn

Reknown scientists born in Europe:

7%, 7y +— 7x hasWonPrize 7y, 7x wasBornIn/isLocatedIn® Europe

2/28

Declarative Graph Querying

isLocatedin

Europe

isLocatedIn

Reknown scientists born in Europe:

7x, 7y «— 7x hasWonPrize 7y, 7x wasBornIn/isLocatedIn®’ Europe

N——
head body

2/28

Declarative Graph Querying

isLocatedin

Europe

isLocatedIn

Reknown scientists born in Europe:

7x, 7y «— 7x hasWonPrize 7y, 7x wasBornIn/isLocatedIn?t Europe

conjunct conjunct

2/28

Declarative Graph Querying

hasWonPrize

isLocatedin

Europe

isLocatedIn

Reknown scientists born in Europe:

7?x, 7y «— 7x hasWonPrize 7y, 7x wasBornIn/isLocatedIn® Europe
—_————

simple relation path relation

2/28

Declarative Graph Querying

hasWonPrize

isLocatedin

isLocatedin

Europe

isLocatedIn

Reknown scientists born in Europe:

wasBornIn/isLocatedIn’ Europe

7?x, 7y «— 7x hasWonPrize 7y, 7x
—_————

simple relation path relation with transitive closure (recursion)

2/28

Recursion

» Essential mechanism to enable deep navigation in a graph

» Major feature for extracting valuable information from a linked data structure
» Navigational paths (regular path queries)

» PageRank, shortest paths, connected components, etc.

3/28

More Examples

All ancestors of Alice:

7y <— Alice (father|mother)™ ?y

Pairs of stops connected by tram lines A and B:

?x, 7y +— 7x nextStopA' ?y, 7x nextStopBT ?y

People with a certain skill that Bob knows, either directly or indirectly:

?x +— Bob knows" ?x:Person, 7x hasSkill skilll

Analysis of drug interactions, etc.

4/28

Recursive graph query evaluation today

» In practice: on large knowledge graphs (e.g. Yago, wikidata), certain recursive queries can
be difficult to evaluate... or even hardly feasible

5/28

Recursive graph query evaluation today

» In practice: on large knowledge graphs (e.g. Yago, wikidata), certain recursive queries can
be difficult to evaluate... or even hardly feasible

> This depends on graph instance (size, topology) and query shape

5/28

Recursive graph query evaluation today

» In practice: on large knowledge graphs (e.g. Yago, wikidata), certain recursive queries can
be difficult to evaluate... or even hardly feasible

> This depends on graph instance (size, topology) and query shape

Recursive subqueries may result in intermediate results whose size
is bigger than the overall graph size

5/28

An example

N Red/Green* 7t

This query retrieves nodes reachable from node N through a given (recursive) path along edges

6/28

An example

N Red/Green* 7t

6/28

Observations
N Red/Green* 7t

Computing Green™ might be very costly (or even unfeasible) on certain graphs.

7/28

Observations
N Red/Green* 7t

Computing Green™ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green* is possible

7/28

Observations
N Red/Green* 7t

Computing Green™ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green* is possible

More generally
The evaluation strategy — the query execution plan — can have a huge impact on performance.

7/28

Observations
N Red/Green* 7t

Computing Green™ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green* is possible

More generally

The evaluation strategy — the query execution plan — can have a huge impact on performance.

Query answering might be feasible... or not. Even for graphs of moderate size.

7/28

Observations
N Red/Green* 7t

Computing Green™ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green* is possible

More generally

The evaluation strategy — the query execution plan — can have a huge impact on performance.

Query answering might be feasible... or not. Even for graphs of moderate size.

Query execution plan is crucial.

7/28

What if...

» the query contains more than one variable?

?x Red*/Green ?y

» more general forms of navigation?

?x (Red | Green)* N

» Several recursions? Which exploration should
start first?

Other examples

or each researcher, select all ¢ the biological entities ene: organisms) relevant to
fé h he f the bi (i.e., genes and t t
egop e in the researchers coa horship network?

t P,

i d by
proteins studied m‘ papevs}u!ho‘re y

atoredy auhoredsyy) [AuhoredBy-referencedBy- encodedons
S horedsy reerenceddy ovrsi

8/28

Fundamental Problem

Given a recursive graph query*, how to generate an efficient evaluation plan?

(*) Well-known recursive query language fragments include e.g.: RPQ, C2RPQ, UCRPQ, etc.

9/28

What is the state of the theory?

10/28

The Theory — Brief (and partial) Recap

1970: Codd's relational algebra (RA), established the domain of databases (multi $G market in 2022)

key ideas: separation of the query language (SQL) from the RA; tables (no recursion)

1979-1990s: attempts at extending RA with recursion, moderate success (limited forms of recursion);

research on the Datalog (logic-programming view) side
1999: SQL supports recursive queries (but seen as optimization barriers for optimizers)

2000-2015: boom of NoSQL research (in particular for trees)
key idea: preserve the native data structure (try not to split into tables)

NoSQL
Late 201x: a myriad of graph DB systems (many with poor/no support of 4
recursion). Some with recursion increasingly inspired by Datalog or SQL. Not only SQL
+
From 2020: RA extended with a more general form of recursion (inspired NewSQL

from tree logics), with application to graphs.

11/28

Relational Data Model (Codd, 1970)

> Data organized in tables (relations)
> 1 database: 1 set of relations

> Type of a relation: set of (possibly typed) column names
» Data seen as tuples (or mappings of column names and values)

author

article

) e e T

Edgar F. 19/08/1923
Codd
2 Marie Curie 07/11/1867
3 Alain Turing 23/06/1912

1

1

A relational model of data
for large shared data banks

Understanding relations

Rayon semis par les
composes de I'Uranium et
du Thorium

Computing machinery and
intelligence

12/28

Oname=Marie Curie

Relational operators: filter

author
o
Edgar F. 19/08/1923
Codd
2 Marie Curie 07/1/1867
\ 3 Alain Turing 23/06/1912 l

N

2 Marie Curie 07/11/1867

article

)

1

1

A relational model of data
for large shared data banks

Understanding relations

Rayon semis par les
composes de I'Uranium et
du Thorium

Computing machinery and
intelligence

13/28

”nume

Relational operators: projection

author
o
Edgar F. 19/08/1923
Codd
2 Marie Curie 07/1/1867
\ 3 Alain Turing 23/06/1912 }

l
=]

Edgar F.
Codd

Marie Curie

Alain
Turing

article
m authld | title
1 1 A relational model of data
for large shared data banks
2 1 Understanding relations
3 2 Rayon semis par les
composes de I'Uranium et
du Thorium
4 3 Computing machinery and

intelligence

14 /28

Relational operators: natural join

author

article

e B ol e

Edgar F. 19/08/1923
Codd
2 Marie Curie 07/1/1867
3 Alain Turing 23/06/1912

2

A relational model of data
for large shared data banks

Understanding relations

Rayon semis par les
composes de I'Uranium et
du Thorium

Computing machinery and
intelligence

e B o Lo

Edgar F. Codd

2 1 Edgar F. Codd

3 2 Marie Curie

19/08/1923

19/08/1923
07/11/1867

A relational model of
data for large shared data
banks

Understanding relations

Rayon semis par les
composes de I'Uranium
et du Thorium 15/28

Other relational operators

» Column renaming p® (author) : renames column a into column b in relation author
» Union U of two relations (preferrably of same type!)
> ..

» No recursion in Codd’s original relational algebra.

16/28

Graph Data

Possible representation: a table keeps track of source and target nodes connected by each
relation

For instance, for a social network:

follows

Anna Tom
Tom Ryan

Ryan Jane

17/28

Overview of some recent results in the area

18/28

Extended Relational Algebra (1-RA, 2020)

X

|C1 — Vi, ..

O—filter(SD)
5 ()
7a ()
B2 ()
w1 U2
p1 X o

X =¢)

3 Cn = Vp|

term

relation variable

constant (tuple)

selection

column renaming

column dropping (antiprojection)
column duplication

union

natural join

fixpoint

19/28

Translation of Path Queries

Path
o)

20/28

Translation of Path Queries

Path
o)

A/B

20/28

Translation of Path Queries

Path
o)

20/28

Translation

A* = Empty Path or Path of one or more edges labeled with A

At=A*/A

21/28

Translation

A* = Empty Path or Path of one or more edges labeled with A

At=A*/A

Tr(A*) = EmptyPath U Tr(A*)/A

21/28

Translation

A* = Empty Path or Path of one or more edges labeled with A

At=A*/A

Tr(A*) = EmptyPath U Tr(A*)/A
u(x: EmptyPath U X/A)

21/28

Translation

A* = Empty Path or Path of one or more edges labeled with A

At=A*/A

Tr(A*) = EmptyPath U Tr(A*)/A
u(X = EmptyPath U X/A
p(X = Bi(AliNodes) U 7m (pf" (X) X pg (Tr(A)))

21/28

New Rewrite Rules

Algebraic transformations of fixpoints

22/28

New Rewrite Rules

Algebraic transformations of fixpoints
» pushing filters?
Ftiter (WX = ©)) = p(X = Cier (1))

22/28

New Rewrite Rules

Algebraic transformations of fixpoints
» pushing filters?

Titter (1(X = ©)) = (X = oirer (¢))
» pushing joins?

URp(X = 9) = p(X = Yxp)

22/28

Algebraic transformations of fixpoints

» pushing filters?
» pushing joins?

» pushing projections?

New Rewrite Rules

rier (X = ©)) = (X = Tieer ()

URp(X = 9) = p(X = Yxp)

Tp (WX = 9)) = u(X =7 ()

22/28

New Rewrite Rules

Algebraic transformations of fixpoints
» pushing filters?
Ftiter (WX = ©)) = p(X = Cier (1))
» pushing joins?
PMu(X = @) = p(X = PXp)
» pushing projections?
Tp (WX = @) = w(X = 7p ()
> ww merging fixpoints?
PX = URMp(X = pUE) < u(X =YX UE U k)

22/28

New Rewrite Rules

Algebraic transformations of fixpoints
» pushing filters?
Titeer (WX =) = (X = Ofiteer (¢))
» pushing joins?
PMu(X = @) = p(X = PXp)
» pushing projections?
Tp (WX = @) = w(X = 7p ()
> ww merging fixpoints?

PX = URMp(X = pUE) < u(X =YX UE U k)

All rules are semantics-preserving
? : decidable criteria [SIGMOD'20]

22/28

Back to simple example

N Red/Green* 7t

23/28

Back to simple example

N Red/Green* 7t

725 (07s—n (Red /(X = BL (AlINodes) U X /Green)))

23/28

Back to simple example

N Red/Green* 7t
725 (07s—n (Red /(X = BL (AlINodes) U X /Green)))

T2s (02s—n (u(X = Red/BE (AliNodes) U X /Green)))

23/28

Back to simple example
N Red/Green* 7t
Trs (076 (Red /u(X = BE (AllNodes) U X /Green)))
Trs (076 ((X = Red /Bt (AllNodes) U X /Green)))

725 (77s=n (1(X = Red U X/Green)))

23/28

N Red/Green* 7t

Frs (75— (Red /(X = Bt (AllNodes) U X /Green)))
Frs (75— (1(X = Red /! (AllNodes) U X /Green)))
725 (075-n (1(X = Red U X /Green)))

s (W(X = 07s—n (Red) U X /Green))

Back to simple example

23/28

N Red/Green* 7t

725 (07s—n (Red /(X = BL (AlINodes) U X /Green)))

T2s (02s—n (u(X = Red/BE (AliNodes) U X /Green)))

725 (77s=n (1(X = Red U X/Green)))

s (W(X = 07s—n (Red) U X /Green))

w(X = 775 (07s—n (Red)) U X /Green)

Back to simple example

23/28

Intuition of merged fixpoints

Sample query of the form: ?x Red™ /Green™ ?y

plan1 : unfold Green™ from right to left, ...

24/28

Intuition of merged fixpoints

Sample query of the form: ?x Red™ /Green™ ?y

plan1 : unfold Green™ from right to left, ...
plan 2 : start with Red™, left to right ...

24/28

Intuition of merged fixpoints

Sample query of the form: ?x Red™ /Green™ ?y

plan1 : unfold Green™ from right to left, ...
plan 2 : start with Red™, left to right ...

plan3 : start with Red™, right to left ...

24/28

Intuition of merged fixpoints

Sample query of the form: ?x Red™ /Green™ ?y

plan 1
plan 2
plan 3

plan i

unfold Green™ from right to left, ...
start with Red™, left to right ...
start with Red™, right to left ...

.merged fixpoint:
(X = Red/Green U Red/X U X /Green)

start from Red/Green, then hop on left by Red”, and on the right by Green®

24/28

More generally: new broader plan space
Graph query (ex: UCRPQ)

Plan space

plans with
merged fixpoints .

1. A graph query is translated into u-RA

25/28

More generally: new broader plan space
Graph query (ex: UCRPQ)

Plan space

plans with
merged fixpoints

2. With transformation rules, we obtain a space of evaluation plans

25/28

More generally: new broader plan space
Graph query (ex: UCRPQ)

Plan space

plans with
merged fixpoints

3. An estimated most efficient plan is selected using a cost estimation and data statistics

25/28

More generally: new broader plan space
Graph query (ex: UCRPQ)

Plan space

25/28

Application for Graph Querying

In practice, on centralized systems

» Implementation on top of PostgreSQL (a popular relational database management system)

» Evaluation of queries on knowledge graphs:

A

Time (Iog scale) for thlrd party queries on YagoDB (from Wikipedia: 62M edges, 42M nodes)

PostgreSQL (unmodified)
PostgreSQL with u-RA plans
Neo4j graph engine

“System L" Datalog engine

Time (s)

EEEN

» Performance gains (orders of magnitude, feasibility) due to new algebraic evaluation plans

26/28

Concluding Remarks

A glance at some hot research activity and recent results:

» Powerful recursive graph queries
> Extension of relational algebra with recursion [SIGMOD’20]
» Query plan enumeration (research results to be presented in 2024)

» Extension to neuro-symbolic graph queries...

27/28

References

@ Louis Jachiet, Pierre Geneves, Nils Gesbert and Nabil Layaida,
On the Optimization of Recursive Relational Queries: Application to Graph Queries.

In Proceedings of the ACM SIGMOD International Conference on Management of data, 2020
(SIGMOD’20)

@ Amela Fejza, Pierre Geneves, Nabil Layaida, Sarah Chlyah
The u-RA System for Recursive Path Queries over Graphs.

In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, 2023 (CIKM'23)

@ Amela Fejza, Pierre Geneves and Nabil Layaida,
Efficient Enumeration of Recursive Plans in Transformation-based Query Optimizers.
Preprint, 2023: https://inria.hal.science/hal-03692274 /file/rlqdag.pdf (to appear in 2024).

28/28

