
Graph Querying

Pierre Genevès
CNRS

1 / 28

Declarative Graph Querying

wasBornIn

Europe

hasWonPrize

isLocatedInwasBornIn

isLocatedIn

isLocatedIn

isLocatedIn

2

Reknown scientists born in Europe:

?x, ?y ←− ?x hasWonPrize ?y, ?x wasBornIn/isLocatedIn+ Europe

2 / 28

Declarative Graph Querying

wasBornIn

Europe

hasWonPrize

isLocatedInwasBornIn

isLocatedIn

isLocatedIn

isLocatedIn

2

Reknown scientists born in Europe:

?x, ?y︸ ︷︷ ︸
head

←− ?x hasWonPrize ?y, ?x wasBornIn/isLocatedIn
+

Europe︸ ︷︷ ︸
body

2 / 28

Declarative Graph Querying

wasBornIn

Europe

hasWonPrize

isLocatedInwasBornIn

isLocatedIn

isLocatedIn

isLocatedIn

2

Reknown scientists born in Europe:

?x, ?y ←− ?x hasWonPrize ?y︸ ︷︷ ︸
conjunct

, ?x wasBornIn/isLocatedIn
+
Europe︸ ︷︷ ︸

conjunct

2 / 28

Declarative Graph Querying

wasBornIn

Europe

hasWonPrize

isLocatedInwasBornIn

isLocatedIn

isLocatedIn

isLocatedIn

2

Reknown scientists born in Europe:

?x, ?y ←− ?x hasWonPrize︸ ︷︷ ︸
simple relation

?y, ?x wasBornIn/isLocatedIn
+︸ ︷︷ ︸

path relation

Europe

2 / 28

Declarative Graph Querying

wasBornIn

Europe

hasWonPrize

isLocatedInwasBornIn

isLocatedIn

isLocatedIn

isLocatedIn

2

Reknown scientists born in Europe:

?x, ?y ←− ?x hasWonPrize︸ ︷︷ ︸
simple relation

?y, ?x wasBornIn/isLocatedIn
+︸ ︷︷ ︸

path relation with transitive closure (recursion)

Europe

2 / 28

Recursion

▶ Essential mechanism to enable deep navigation in a graph

▶ Major feature for extracting valuable information from a linked data structure

▶ Navigational paths (regular path queries)

▶ PageRank, shortest paths, connected components, etc.

3 / 28

More Examples

All ancestors of Alice:

?y ←− Alice (father|mother)+ ?y

Pairs of stops connected by tram lines A and B:

?x, ?y ←− ?x nextStopA+ ?y, ?x nextStopB+ ?y

People with a certain skill that Bob knows, either directly or indirectly:

?x ←− Bob knows+ ?x:Person, ?x hasSkill skill1

Analysis of drug interactions, etc.

4 / 28

Recursive graph query evaluation today

▶ In practice: on large knowledge graphs (e.g. Yago, wikidata), certain recursive queries can
be difficult to evaluate... or even hardly feasible

▶ This depends on graph instance (size, topology) and query shape

Recursive subqueries may result in intermediate results whose size
is bigger than the overall graph size

5 / 28

Recursive graph query evaluation today

▶ In practice: on large knowledge graphs (e.g. Yago, wikidata), certain recursive queries can
be difficult to evaluate... or even hardly feasible

▶ This depends on graph instance (size, topology) and query shape

Recursive subqueries may result in intermediate results whose size
is bigger than the overall graph size

5 / 28

Recursive graph query evaluation today

▶ In practice: on large knowledge graphs (e.g. Yago, wikidata), certain recursive queries can
be difficult to evaluate... or even hardly feasible

▶ This depends on graph instance (size, topology) and query shape

Recursive subqueries may result in intermediate results whose size
is bigger than the overall graph size

5 / 28

An example

N Red/Green∗ ?t

This query retrieves nodes reachable from node N through a given (recursive) path along edges

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

An example

N Red/Green∗ ?t

N

6 / 28

Observations

N Red/Green∗ ?t

Computing Green∗ might be very costly (or even unfeasible) on certain graphs.

7 / 28

Observations

N Red/Green∗ ?t

Computing Green∗ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green∗ is possible

7 / 28

Observations

N Red/Green∗ ?t

Computing Green∗ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green∗ is possible

More generally
The evaluation strategy – the query execution plan – can have a huge impact on performance.

7 / 28

Observations

N Red/Green∗ ?t

Computing Green∗ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green∗ is possible

More generally
The evaluation strategy – the query execution plan – can have a huge impact on performance.

Query answering might be feasible... or not. Even for graphs of moderate size.

7 / 28

Observations

N Red/Green∗ ?t

Computing Green∗ might be very costly (or even unfeasible) on certain graphs.

Retrieving the query results without computing the full relation Green∗ is possible

More generally
The evaluation strategy – the query execution plan – can have a huge impact on performance.

Query answering might be feasible... or not. Even for graphs of moderate size.

Query execution plan is crucial.

7 / 28

Other examples

What if...

▶ the query contains more than one variable?

?x Red∗/Green ?y

▶ more general forms of navigation?

?x (Red | Green)∗ N

▶ Several recursions? Which exploration should
start first?

8 / 28

Fundamental Problem

Given a recursive graph query∗, how to generate an efficient evaluation plan?

(∗) Well-known recursive query language fragments include e.g.: RPQ, C2RPQ, UCRPQ, etc.

9 / 28

What is the state of the theory?

10 / 28

The Theory – Brief (and partial) Recap

1970: Codd’s relational algebra (RA), established the domain of databases (multi $G market in 2022)
key ideas: separation of the query language (SQL) from the RA; tables (no recursion)

1979-1990s: attempts at extending RA with recursion, moderate success (limited forms of recursion);
research on the Datalog (logic-programming view) side

1999: SQL supports recursive queries (but seen as optimization barriers for optimizers)

2000-2015: boom of NoSQL research (in particular for trees)
key idea: preserve the native data structure (try not to split into tables)

Late 201x: a myriad of graph DB systems (many with poor/no support of
recursion). Some with recursion increasingly inspired by Datalog or SQL.

From 2020: RA extended with a more general form of recursion (inspired
from tree logics), with application to graphs.

NoSQL
↓

Not only SQL
↓

NewSQL

11 / 28

Relational Data Model (Codd, 1970)

▶ Data organized in tables (relations)
▶ 1 database: 1 set of relations
▶ Type of a relation: set of (possibly typed) column names
▶ Data seen as tuples (or mappings of column names and values)

12 / 28

Relational operators: filter

13 / 28

Relational operators: projection

14 / 28

Relational operators: natural join

15 / 28

Other relational operators

▶ Column renaming ρba (author) : renames column a into column b in relation author

▶ Union ∪ of two relations (preferrably of same type!)

▶ ...

▶ No recursion in Codd’s original relational algebra.

16 / 28

Graph Data

Possible representation: a table keeps track of source and target nodes connected by each
relation

For instance, for a social network:

17 / 28

Overview of some recent results in the area

18 / 28

Extended Relational Algebra (µ-RA, 2020)

φ ::= term
| X relation variable
| |c1 → v1, . . . , cn → vn| constant (tuple)
| σfilter (φ) selection
| ρba (φ) column renaming
| π̃a (φ) column dropping (antiprojection)
| βb

a (φ) column duplication
| φ1 ∪ φ2 union
| φ1 φ2 natural join

| µ(X = φ) fixpoint

19 / 28

Translation of Path Queries

?src ?trg
Path

?s ?m ?t
A B

A/B

Tr(A/B) = π̃m (ρmt (Tr(A)) ρms (Tr(B)))

20 / 28

Translation of Path Queries

?src ?trg
Path

?s ?m ?t
A B

A/B

Tr(A/B) = π̃m (ρmt (Tr(A)) ρms (Tr(B)))

20 / 28

Translation of Path Queries

?src ?trg
Path

?s ?m ?t
A B

A/B

Tr(A/B) = π̃m (ρmt (Tr(A)) ρms (Tr(B)))

20 / 28

Translation

A∗ = Empty Path or Path of one or more edges labeled with A︸ ︷︷ ︸
A+=A∗/A

Tr(A∗) =

EmptyPath

∪

Tr(A∗)/A

= µ
(
X = EmptyPath ∪ X/A

)
= µ

(
X = βs

t (AllNodes) ∪ π̃m (ρmt (X) ρms (Tr(A)))
)

21 / 28

Translation

A∗ = Empty Path or Path of one or more edges labeled with A︸ ︷︷ ︸
A+=A∗/A

Tr(A∗) = EmptyPath ∪ Tr(A∗)/A

= µ
(
X = EmptyPath ∪ X/A

)
= µ

(
X = βs

t (AllNodes) ∪ π̃m (ρmt (X) ρms (Tr(A)))
)

21 / 28

Translation

A∗ = Empty Path or Path of one or more edges labeled with A︸ ︷︷ ︸
A+=A∗/A

Tr(A∗) = EmptyPath ∪ Tr(A∗)/A

= µ
(
X = EmptyPath ∪ X/A

)

= µ
(
X = βs

t (AllNodes) ∪ π̃m (ρmt (X) ρms (Tr(A)))
)

21 / 28

Translation

A∗ = Empty Path or Path of one or more edges labeled with A︸ ︷︷ ︸
A+=A∗/A

Tr(A∗) = EmptyPath ∪ Tr(A∗)/A

= µ
(
X = EmptyPath ∪ X/A

)
= µ

(
X = βs

t (AllNodes) ∪ π̃m (ρmt (X) ρms (Tr(A)))
)

21 / 28

New Rewrite Rules

Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)

22 / 28

New Rewrite Rules

Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)

22 / 28

New Rewrite Rules

Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)

22 / 28

New Rewrite Rules

Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)

22 / 28

New Rewrite Rules

Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)

22 / 28

New Rewrite Rules

Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)

All rules are semantics-preserving
? : decidable criteria [SIGMOD’20]

22 / 28

Back to simple example

N Red/Green∗ ?t

π̃?s (σ?s=N (Red/µ(X = βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red/βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red ∪ X/Green)))

π̃?s (µ(X = σ?s=N (Red) ∪ X/Green))

µ(X = π̃?s (σ?s=N (Red)) ∪ X/Green)

23 / 28

Back to simple example

N Red/Green∗ ?t

π̃?s (σ?s=N (Red/µ(X = βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red/βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red ∪ X/Green)))

π̃?s (µ(X = σ?s=N (Red) ∪ X/Green))

µ(X = π̃?s (σ?s=N (Red)) ∪ X/Green)

23 / 28

Back to simple example

N Red/Green∗ ?t

π̃?s (σ?s=N (Red/µ(X = βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red/βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red ∪ X/Green)))

π̃?s (µ(X = σ?s=N (Red) ∪ X/Green))

µ(X = π̃?s (σ?s=N (Red)) ∪ X/Green)

23 / 28

Back to simple example

N Red/Green∗ ?t

π̃?s (σ?s=N (Red/µ(X = βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red/βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red ∪ X/Green)))

π̃?s (µ(X = σ?s=N (Red) ∪ X/Green))

µ(X = π̃?s (σ?s=N (Red)) ∪ X/Green)

23 / 28

Back to simple example

N Red/Green∗ ?t

π̃?s (σ?s=N (Red/µ(X = βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red/βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red ∪ X/Green)))

π̃?s (µ(X = σ?s=N (Red) ∪ X/Green))

µ(X = π̃?s (σ?s=N (Red)) ∪ X/Green)

23 / 28

Back to simple example

N Red/Green∗ ?t

π̃?s (σ?s=N (Red/µ(X = βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red/βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red ∪ X/Green)))

π̃?s (µ(X = σ?s=N (Red) ∪ X/Green))

µ(X = π̃?s (σ?s=N (Red)) ∪ X/Green)

23 / 28

Intuition of merged fixpoints

Sample query of the form: ?x Red+/Green+ ?y

plan 1 : unfold Green+ from right to left, . . .

24 / 28

Intuition of merged fixpoints

Sample query of the form: ?x Red+/Green+ ?y

plan 1 : unfold Green+ from right to left, . . .
plan 2 : start with Red+, left to right . . .

24 / 28

Intuition of merged fixpoints

Sample query of the form: ?x Red+/Green+ ?y

plan 1 : unfold Green+ from right to left, . . .
plan 2 : start with Red+, left to right . . .
plan 3 : start with Red+, right to left . . .

...
...

24 / 28

Intuition of merged fixpoints

Sample query of the form: ?x Red+/Green+ ?y

plan 1 : unfold Green+ from right to left, . . .
plan 2 : start with Red+, left to right . . .
plan 3 : start with Red+, right to left . . .

...
...

plan i : merged fixpoint:

µ(X = Red/Green ∪ Red/X ∪ X/Green)
start from Red/Green, then hop on left by Red∗, and on the right by Green∗

...
...

24 / 28

More generally: new broader plan space

1. A graph query is translated into µ-RA

25 / 28

More generally: new broader plan space

2. With transformation rules, we obtain a space of evaluation plans

25 / 28

More generally: new broader plan space

3. An estimated most efficient plan is selected using a cost estimation and data statistics

25 / 28

More generally: new broader plan space

µ-RA plan space is richer compared to previous approaches (e.g. fixpoints can be merged)

25 / 28

Application for Graph Querying

In practice, on centralized systems

▶ Implementation on top of PostgreSQL (a popular relational database management system)

▶ Evaluation of queries on knowledge graphs:

PostgreSQL (unmodified)
PostgreSQL with µ-RA plans
Neo4j graph engine
“System L” Datalog engine

Time (log. scale) for third-party queries on YagoDB (from Wikipedia: 62M edges, 42M nodes)

▶ Performance gains (orders of magnitude, feasibility) due to new algebraic evaluation plans

26 / 28

Concluding Remarks

A glance at some hot research activity and recent results:

▶ Powerful recursive graph queries

▶ Extension of relational algebra with recursion [SIGMOD’20]

▶ Query plan enumeration (research results to be presented in 2024)

▶ Extension to neuro-symbolic graph queries...

27 / 28

References

Louis Jachiet, Pierre Genevès, Nils Gesbert and Nabil Layäıda,

On the Optimization of Recursive Relational Queries: Application to Graph Queries.

In Proceedings of the ACM SIGMOD International Conference on Management of data, 2020
(SIGMOD’20)

Amela Fejza, Pierre Genevès, Nabil Layäıda, Sarah Chlyah

The µ-RA System for Recursive Path Queries over Graphs.

In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, 2023 (CIKM’23)

Amela Fejza, Pierre Genevès and Nabil Layäıda,

Efficient Enumeration of Recursive Plans in Transformation-based Query Optimizers.

Preprint, 2023: https://inria.hal.science/hal-03692274/file/rlqdag.pdf (to appear in 2024).

28 / 28

