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Recursion

▶ Essential mechanism to enable deep navigation in a graph

▶ Major feature for extracting valuable information from a linked data structure

▶ Navigational paths (regular path queries)

▶ PageRank, shortest paths, connected components, etc.
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More Examples

All ancestors of Alice:

?y ←− Alice (father|mother)+ ?y

Pairs of stops connected by tram lines A and B:

?x, ?y ←− ?x nextStopA+ ?y, ?x nextStopB+ ?y

People with a certain skill that Bob knows, either directly or indirectly:

?x ←− Bob knows+ ?x:Person, ?x hasSkill skill1

Analysis of drug interactions, etc.
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Recursive graph query evaluation today

▶ In practice: on large knowledge graphs (e.g. Yago, wikidata), certain recursive queries can
be difficult to evaluate... or even hardly feasible

▶ This depends on graph instance (size, topology) and query shape

Recursive subqueries may result in intermediate results whose size
is bigger than the overall graph size
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An example

N Red/Green∗ ?t

This query retrieves nodes reachable from node N through a given (recursive) path along edges
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Observations

N Red/Green∗ ?t

Computing Green∗ might be very costly (or even unfeasible) on certain graphs.
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Retrieving the query results without computing the full relation Green∗ is possible

More generally
The evaluation strategy – the query execution plan – can have a huge impact on performance.

Query answering might be feasible... or not. Even for graphs of moderate size.

Query execution plan is crucial.
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Other examples

What if...

▶ the query contains more than one variable?

?x Red∗/Green ?y

▶ more general forms of navigation?

?x (Red | Green)∗ N

▶ Several recursions? Which exploration should
start first?
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Fundamental Problem

Given a recursive graph query∗, how to generate an efficient evaluation plan?

(∗) Well-known recursive query language fragments include e.g.: RPQ, C2RPQ, UCRPQ, etc.
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What is the state of the theory?
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The Theory – Brief (and partial) Recap

1970: Codd’s relational algebra (RA), established the domain of databases (multi $G market in 2022)
key ideas: separation of the query language (SQL) from the RA; tables (no recursion)

1979-1990s: attempts at extending RA with recursion, moderate success (limited forms of recursion);
research on the Datalog (logic-programming view) side

1999: SQL supports recursive queries (but seen as optimization barriers for optimizers)

2000-2015: boom of NoSQL research (in particular for trees)
key idea: preserve the native data structure (try not to split into tables)

Late 201x: a myriad of graph DB systems (many with poor/no support of
recursion). Some with recursion increasingly inspired by Datalog or SQL.

From 2020: RA extended with a more general form of recursion (inspired
from tree logics), with application to graphs.

NoSQL
↓

Not only SQL
↓

NewSQL
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Relational Data Model (Codd, 1970)

▶ Data organized in tables (relations)
▶ 1 database: 1 set of relations
▶ Type of a relation: set of (possibly typed) column names
▶ Data seen as tuples (or mappings of column names and values)
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Relational operators: filter
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Relational operators: projection
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Relational operators: natural join
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Other relational operators

▶ Column renaming ρba (author) : renames column a into column b in relation author

▶ Union ∪ of two relations (preferrably of same type!)

▶ ...

▶ No recursion in Codd’s original relational algebra.
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Graph Data

Possible representation: a table keeps track of source and target nodes connected by each
relation

For instance, for a social network:
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Overview of some recent results in the area
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Extended Relational Algebra (µ-RA, 2020)

φ ::= term
| X relation variable
| |c1 → v1, . . . , cn → vn| constant (tuple)
| σfilter (φ) selection
| ρba (φ) column renaming
| π̃a (φ) column dropping (antiprojection)
| βb

a (φ) column duplication
| φ1 ∪ φ2 union
| φ1 φ2 natural join

| µ(X = φ) fixpoint
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Translation of Path Queries

?src ?trg
Path

?s ?m ?t
A B

A/B

Tr(A/B) = π̃m (ρmt (Tr(A)) ρms (Tr(B)))
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Translation

A∗ = Empty Path or Path of one or more edges labeled with A︸ ︷︷ ︸
A+=A∗/A

Tr(A∗) =

EmptyPath

∪

Tr(A∗)/A

= µ
(
X = EmptyPath ∪ X/A

)
= µ

(
X = βs

t (AllNodes) ∪ π̃m (ρmt (X ) ρms (Tr(A)))
)
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New Rewrite Rules

Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)
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Algebraic transformations of fixpoints

▶ pushing filters?

σfilter (µ(X = φ))
?
= µ(X = σfilter (φ))

▶ pushing joins?

ψ µ(X = φ)
?
= µ(X = ψ φ)

▶ pushing projections?

π̃p (µ(X = φ))
?
= µ(X = π̃p (φ))

▶ merging fixpoints?

µ(X = ψ ∪ κ) µ(X = φ ∪ ξ) ?
= µ(X = ψ φ ∪ ξ ∪ κ)

All rules are semantics-preserving
? : decidable criteria [SIGMOD’20]
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Back to simple example

N Red/Green∗ ?t

π̃?s (σ?s=N (Red/µ(X = βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red/βt
s (AllNodes) ∪ X/Green)))

π̃?s (σ?s=N (µ(X = Red ∪ X/Green)))

π̃?s (µ(X = σ?s=N (Red) ∪ X/Green))

µ(X = π̃?s (σ?s=N (Red)) ∪ X/Green)
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Intuition of merged fixpoints

Sample query of the form: ?x Red+/Green+ ?y

plan 1 : unfold Green+ from right to left, . . .
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Intuition of merged fixpoints

Sample query of the form: ?x Red+/Green+ ?y

plan 1 : unfold Green+ from right to left, . . .
plan 2 : start with Red+, left to right . . .
plan 3 : start with Red+, right to left . . .

...
...

plan i : merged fixpoint:

µ(X = Red/Green ∪ Red/X ∪ X/Green)
start from Red/Green, then hop on left by Red∗, and on the right by Green∗

...
...
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More generally: new broader plan space

1. A graph query is translated into µ-RA
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More generally: new broader plan space

2. With transformation rules, we obtain a space of evaluation plans
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More generally: new broader plan space

3. An estimated most efficient plan is selected using a cost estimation and data statistics
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More generally: new broader plan space

µ-RA plan space is richer compared to previous approaches (e.g. fixpoints can be merged)
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Application for Graph Querying

In practice, on centralized systems

▶ Implementation on top of PostgreSQL (a popular relational database management system)

▶ Evaluation of queries on knowledge graphs:

PostgreSQL (unmodified)
PostgreSQL with µ-RA plans
Neo4j graph engine
“System L” Datalog engine

Time (log. scale) for third-party queries on YagoDB (from Wikipedia: 62M edges, 42M nodes)

▶ Performance gains (orders of magnitude, feasibility) due to new algebraic evaluation plans
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Concluding Remarks

A glance at some hot research activity and recent results:

▶ Powerful recursive graph queries

▶ Extension of relational algebra with recursion [SIGMOD’20]

▶ Query plan enumeration (research results to be presented in 2024)

▶ Extension to neuro-symbolic graph queries...
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